博通——高性能光（电）耦（合）器的业界领导者

门极驱动光电耦合器
- 极高的CMR性能（信号隔离）
- 保护IGBT的更多集成功能，如米勒限等。
- 小封装，节省空间/成本
- 某些产品可节省高达20%的成本

电流电压传感器光电耦合器
- 高精度
- 低噪声
- 所占面积更小-节省空间/成本
- 与霍尔效应传感器相比，可节省高达40%的成本

低功耗数字光电耦合器
- 低功耗（节能80%以上）
- 坚固共模噪声抑制
- 某些产品可节省高达20%的成本

应用
- 工业驱动器、工业网络、电机控制
- PLC输入/输出隔离、配电系统、机器人、开关电源

电机中心

图示结构

I/O接口

人机接口
博通光耦—隔离性能的业界巅峰之作

光隔离的价值主张:

- 真正的电隔离
- 强化=故障安全隔离
- 优异的信号抗扰度
- 低阻抗LED输入（Ω）= 传导和感应EMI抑制
- 极低的固有电容（pF）= 没有因瞬变引致的偏电流所发的共模噪声故障

- 无电感
- 极低功率（mW）
- 快速的反应时间、经久耐用
- 高性能LED技术（30年现场寿命）

安全隔离

- 安全认证/UL，CSA和IEC/EN/DIN
- EN 60747-5-5

市场上其他隔离技术供应商（清单不完整）

- 光隔离供应商：Broadcom, Fairchild, Toshiba, Vishay, Renesas, Sharp

- 替代隔离技术供应商：TI, ADI, SiLabs, Infineon
请确保您已了解：

- 不同的隔离技术和标准
- 如何定义安全和连续工作电压
- 不同的失效机制以及它们对光学和非光学隔离器的意义
- Broadcom对不同隔离要求的建议

如何保证您客户的安全
绝缘等级

电气安全
- 保护终端用户免受电气危害所需的电气绝缘

连续工作应力电压
- 极端运行寿命期间预期的电应力条件

瞬态应力电压
- 通常用于描述适合提供电气安全的绝缘

加强绝缘
- 加强绝缘有效性

最小贯穿绝缘距离
- 双层绝缘层相当于2x基本绝缘
- 连续监测高压老化机制
隔离（isolation）和绝缘（insulation）有何区别？

虽然这两个术语通常可互换使用，但隔离是指两个系统或电压电平之间的分离（seperation）；而绝缘是指用于进行分离的实际介质。例如，光耦是一种隔离器件，在其LED发射器和二极管检测器之间采用了硅绝缘屏障。
光耦和隔离器的安全标准

IEC60864-低压设备的绝缘坐标
3.3.2.2长期压力及其影响
3.3.2.2.1局部放电
3.3.2.2.3其他压力。许多其他压力会损坏绝缘，技术委员会必须考虑到这些压力。

VDE0884-光电耦合器安全标准
使用局部放电测试，以提供100%的耐久性寿命屏幕

草案标准VDE0884-10第1版磁隔离器标准
仅使用局部放电测试来检查HV寿命，原理HV老化机制未检查

草案标准VDE0884-10第2版
使用局部放电测试和原理老化机制的类型测试来提供HV寿命的预测，增加了基本绝缘等级。

IEC60747-5-5和IEC 60747-5-2-光电耦合器组件安全标准

EN60747-5-5 光电耦合器组件安全标准

确保你理解了!!!
与合适的客户人员交谈，标准和质量部门负责安全!
定义安全的连续工作电压

安全连续工作电压是...
...就像在晴朗的一天沿着悬崖行走

- 确定不会损坏隔离开关的安全连续电压电平
 ...你可以清楚地看到悬崖的边缘

- 安全连续工作电压应远离标称工作电压的瞬态变化
 ...如果向左或向右迈出一步，你仍然不会掉下去

- 安全连续电压水平不应随时间变化
 ...边缘静止不动
隔离器的相关老化机制

* 光耦—使用厚绝缘材料可防止空间电荷老化。
 首要的故障机制是局部放电。

* 在聚酰亚胺涂层上使用旋涂的碳氟离器—
 使用<25μm的薄厚聚合物涂层，会导致高介电应力，
 从而容易引起空间电荷退化。
 首要的故障机制是空间电荷老化。

* 采用薄膜SiO2<10μm的电容器/磁隔离器。
 高E场应力容易引发SiO2特殊的时变故障机制。
 首要的故障机制是SiO2特殊的TDB（介电层时变击穿）。

请确保您已了解！！！
不同的隔离技术有不同的失效机制
工作电压由IEC 60747-5-5定义

这是绝缘屏蔽在器件寿命期间必须耐受的最高连续电压。通过在每个产品器件上进行的局部放电测试来保证绝缘的完整性。

在存在显著电位差（potential differences）的应用中，最重要的安全参数是IEC/EN/DIN EN 60747-5-5定义的最高工作绝缘电压（Viorm）。该标准使用局部放电测试来确定绝缘在器件寿命期间必须耐受的工作电压水平。

局部放电测试的基本原理是：
- 用于安全电气隔离的绝缘不仅需要耐受击穿电压；
- 还需要能够防止由于高电场引起的任何劣化的电压水平。

在生产中，局部放电测试在1.875 x Viorm电压下持续1秒。

请确保您已了解！！！
替代隔离技术不再是IEC认证的60747-5-2，它们根据最新的VDE安全标准-VDE0844-10进行认证
测试非光学隔离器的相关老化机制

在使用旋涂聚酰胺涂层的磁隔离器中，存在会引发空间电荷退化的更高介电应力。
首要的故障机制是空间电荷老化，它会随着时变降低击穿电压阈值。
目前，不可能测试成品中的空间电荷老化。

在使用薄膜SiO2的电容式或磁性隔离器中，首要的故障机制是SiO2技术特有的、称为介质层时变击穿（TIDDB），
确定TIDDB的测试方法具有破坏性，无法在生产中进行测试。
为什么不能在非光学隔离器上使用局部放电测试？

理论上可行，但实际上无效；因为这些替代技术的首要故障机制不同，并且不能通过局部放电测试来检测。

通过了局部放电测试的非光学隔离器在连续承受局部放电测试中使用的电压几小时后就不灵了（光学则安然无恙）。
使用VDE0884-11验证工作电压

- 使用类型测试和统计建模来预测HV寿命。没有诱发HV老化的机制的连续监测
 IEC60747-5-5为光耦提供100%的首要HV老化机制的连续监测

- 许可/预测在使用寿命期间发生的故障——
 基本绝缘为1000ppm（百万分之），加强绝缘为1ppm
 IEC60747-5-5删除了光耦的有源（active）
 HV老化机理—确保在整个使用寿命期间无故障

- 加强绝缘的安全系数仅为1.25。
 IEC绝缘坐阵系统标称要求的安全系数为2，IEC60747-5-5使用1.85的安全系数

请确保您已了解！！！

用于增强隔离的
VDE0884-11允许1 ppm用于备用隔离开关。
VDE标准中没有连续的生产监控。
确保您了解不同标准中的失效机制，
因为测试结果可能会产生误导和危险。
UL1577定义的耐压

这是绝缘屏障需要耐受一分钟的最高电压。

耐压是根据UL1577的介电耐压测试定义的安全参数。
这是一种对绝缘系统和隔离装置的测试，其中在隔离装置的输入和输出端子之间施加电压（破坏性测试）。

典型耐压额定值为2500-5000 Vrms。

这是绝缘屏障需要耐受一分钟的最高电压。

与产品使用期间的高电压无关。

在制造过程中，每个隔离器在1.2倍额定介电绝缘电压下测试一秒钟。

UL1577可用于认证光电发射器及非光学隔离器技术。
借助强健的LED技术实现安全隔离

LED的寿命本质上取决于其质量等级。用于低成本消费级光电模块和高端LED性能下降的速度可能比工业或汽车级光电模块中使用的LED更快。博通已经进行了广泛的测试，并为其所有工业和汽车级光模块提供LED寿命性能数据。

假情况预测显示：在应用中，使用30年以上的性能下降不到10%。

<table>
<thead>
<tr>
<th>功率</th>
<th>效率</th>
<th>缺陷</th>
</tr>
</thead>
<tbody>
<tr>
<td>低VF材料</td>
<td>高亮度</td>
<td>外延生长</td>
</tr>
<tr>
<td>低中频驱动器</td>
<td>材料LED光提取</td>
<td>LED制造</td>
</tr>
<tr>
<td>电流扩散设计</td>
<td>镜头/光学设计</td>
<td>组装</td>
</tr>
<tr>
<td></td>
<td></td>
<td>处理</td>
</tr>
</tbody>
</table>
博通光耦的LED寿命

Figure 1. CTR performance vs. field years for All aku (Type 1) LED (operating: $I_s = 16$ mA, 50% duty cycle, $T_s = 80^\circ C$)

Figure 2. CTR performance vs. field years for All aku (Type 2) LED (operating: $I_s = 6$ mA, 100% duty cycle, $T_s = 80^\circ C$)

Figure 3. CTR performance vs. field years for GaAs LED (operating: $I_s = 15$ mA, 50% duty cycle, $T_s = 80^\circ C$)

Figure 4. CTR performance vs. field years for All aku (Type 2) LED at different I_s (20% duty cycle, $T_s = 80^\circ C$)
博通隔离产品
博通光耦封装

<table>
<thead>
<tr>
<th>封装类型</th>
<th>尺寸 (mm)</th>
<th>管脚数</th>
<th>单位</th>
</tr>
</thead>
<tbody>
<tr>
<td>S05</td>
<td>3.9 x 1.8</td>
<td>5</td>
<td>12000</td>
</tr>
<tr>
<td>6266</td>
<td>4.2 x 4.0</td>
<td>9</td>
<td>2500</td>
</tr>
<tr>
<td>6268</td>
<td>4.2 x 4.0</td>
<td>9</td>
<td>2500</td>
</tr>
<tr>
<td>8-Pin</td>
<td>7.4 x 3.0</td>
<td>8</td>
<td>1200</td>
</tr>
<tr>
<td>8-Pin</td>
<td>3.2 x 1.6</td>
<td>8</td>
<td>2000</td>
</tr>
<tr>
<td>14.2mm 1500B</td>
<td>8.8 x 4.2</td>
<td>1500</td>
<td></td>
</tr>
<tr>
<td>Digital Isolator</td>
<td>4.2 x 1.0</td>
<td>-</td>
<td>12000</td>
</tr>
<tr>
<td>S08</td>
<td>4.2 x 4.0</td>
<td>+</td>
<td>2500</td>
</tr>
<tr>
<td>S016</td>
<td>5.1 x 3.1</td>
<td>+</td>
<td>2500</td>
</tr>
</tbody>
</table>

IEC工作电压

<table>
<thead>
<tr>
<th>封装类型</th>
<th>尺寸 (mm)</th>
<th>管脚数</th>
<th>单位</th>
</tr>
</thead>
<tbody>
<tr>
<td>S05</td>
<td>3.9 x 1.8</td>
<td>5</td>
<td>12000</td>
</tr>
<tr>
<td>6266</td>
<td>4.2 x 4.0</td>
<td>9</td>
<td>2500</td>
</tr>
<tr>
<td>6268</td>
<td>4.2 x 4.0</td>
<td>9</td>
<td>2500</td>
</tr>
<tr>
<td>8-Pin</td>
<td>7.4 x 3.0</td>
<td>8</td>
<td>1200</td>
</tr>
<tr>
<td>8-Pin</td>
<td>3.2 x 1.6</td>
<td>8</td>
<td>2000</td>
</tr>
<tr>
<td>14.2mm 1500B</td>
<td>8.8 x 4.2</td>
<td>1500</td>
<td></td>
</tr>
<tr>
<td>Digital Isolator</td>
<td>4.2 x 1.0</td>
<td>-</td>
<td>12000</td>
</tr>
<tr>
<td>S08</td>
<td>4.2 x 4.0</td>
<td>+</td>
<td>2500</td>
</tr>
<tr>
<td>S016</td>
<td>5.1 x 3.1</td>
<td>+</td>
<td>2500</td>
</tr>
</tbody>
</table>

UL认证
博通对隔离技术的建议

<table>
<thead>
<tr>
<th>功能</th>
<th>功能性电压</th>
<th>安全保障电压</th>
<th>安全连接电压</th>
</tr>
</thead>
<tbody>
<tr>
<td>光耦合器</td>
<td>内部绝缘结构超过封装外部闪络电压</td>
<td>厚绝缘可防止部分硅氮和空间电荷老化</td>
<td>内部绝缘结构超过封装外部闪络电压</td>
</tr>
<tr>
<td>磁性驱动聚酸亚胺<25um</td>
<td>暴露通信接口的ESD损伤</td>
<td>E场应力容易激活空间电荷老化, 造成高压暴变，如在电机驱动器中的硅氮老化绝缘</td>
<td>低能量ESD和重复的过压暴变能够对内部绝缘造成永久性损伤</td>
</tr>
<tr>
<td>电容式SiO2</td>
<td>暴露通信接口的ESD损伤</td>
<td>E场应力容易激活SiO2的特性，导致电荷暴变，如在电机驱动器中的硅氮老化绝缘</td>
<td>低能量ESD和重复的过压暴变能够对内部绝缘造成永久性损伤</td>
</tr>
<tr>
<td>增强平面变压器</td>
<td>内部绝缘结构超过封装外部闪络电压</td>
<td>厚绝缘可防止部分硅氮和空间电荷老化</td>
<td>内部绝缘结构超过封装外部闪络电压</td>
</tr>
</tbody>
</table>

![表格图像](image-url)