

Cypress USB TypeC 技术和市场

EZ-PD系列产品应用于主机, Dongle, Dock, 线缆, 充电器, 车充,移动电源, 显示器

中国区: Steven Zhu

USB Type-C Products With Power Delivery

Optimized for Multiple Applications

CCG1: First To Market Notebooks, dongles, cables, docks, monitors

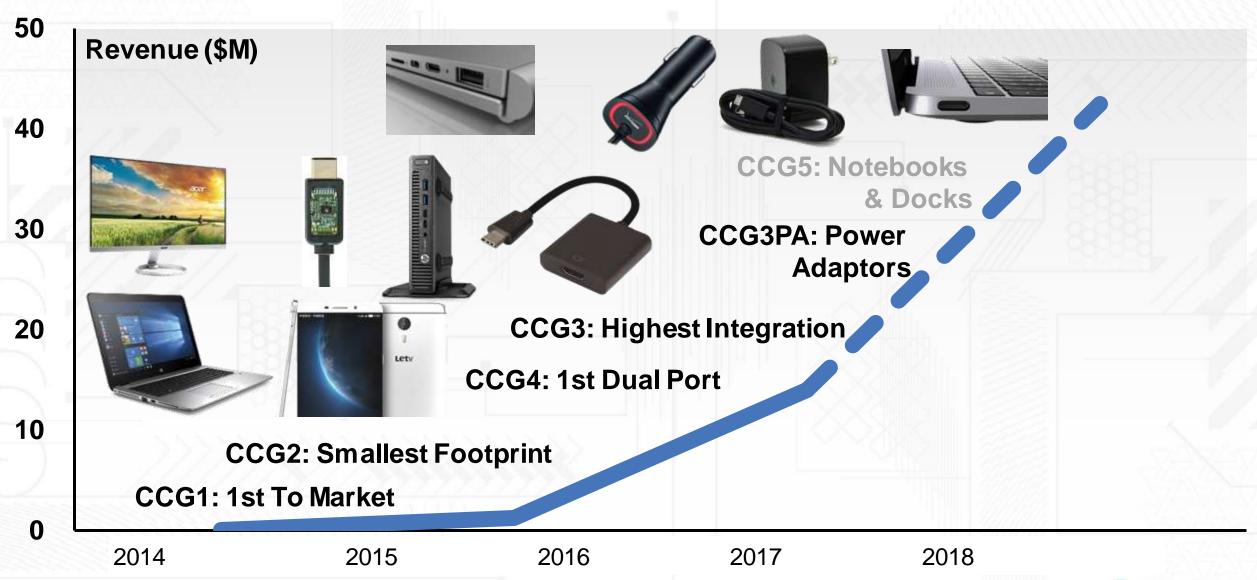
CCG2: Smallest Footprint Cables and smartphones

CCG3:
Highest Integration
Power adapters
and accessories

CCG4:
First 2-Port Type-C
Personal
Computers

A \$896M Market Growing at 89% CAGR¹ 2016 – 2021

- Programmable PSoC MCU platform has enabled rapid device prototypes, paving the way for first-to-market production solutions
- Superior integration yields cost-effective single-chip solutions
- Easy implementation of low-cost power delivery up to 100W
- Configurability enables engineers to keep pace with Type-C and power delivery specs, eliminating compliance issues
- Products optimized for every Type-C application accelerate customer's time to market



Cypress has been "Making USB Universal"® since 1996, with more than 1.4B units shipped

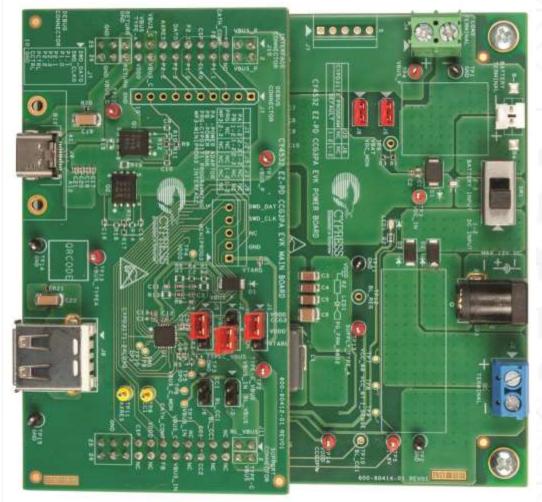
1. Gartner 2015 and Cypress estimates

We Have Earned the #1 Market Position with 35% Market share

Design Problems Engineers Face

- A USB-C power source requires a large BOM
 - A Type-C power adapter/charger requires multiple ICs, including 30-V-tolerant regulator, high-voltage PFET gate drivers, overvoltage protection (OVP) and overcurrent protection (OCP) circuits, VBus-to-configuration channel (CC) short protection and electrostatic discharge (ESD) protection
- New power adapter/charger designs are required to support <u>Power Delivery 3.0 (PD 3.0)</u> with <u>programmable power supply (PPS)</u> support and <u>Quick Charge 4.0 (QC 4.0)</u> standards
 - External low-side current sense¹ and voltage regulation² are required to enable programmable V_{BUS} control
- Rapidly evolving USB standards make compliance and interoperability a challenge
 - USB-C and PD specifications are continuously changing
 - Many existing devices do not interoperate, creating user confusion and resentment
- Cypress' CCG3PA solves these problems, providing:
 - Integrated 30-V-tolerant regulator, V_{BUS}-to-CC short protection, high-voltage PFET gate drivers, OVP, OCP and ESD protection
 - Integrated voltage regulation and low-side current-sense amplifier for programmable V_{BUS} control
 - Integrated ARM® Cortex®-M0 and 64KB Flash with read-while-write function for firmware upgradeability to overcome interop issues

CCG3PA enables a high level of integration, reduces BOM cost and simplifies system design



Getting Started

CCG3PA Evaluation Kit provides:

- Support for power adapters/chargers and power banks
- One Type-C source or sink port and Type-A source port
- Support for USB PD 3.0 with PPS support
- Support for QC 4.0, BC 1.2, Apple Charging 2.4A
 and Samsung AFC¹ charging protocols on Type-A port
- Support for 1-cell and 2-cell battery (power bank application)
- Charging for notebooks, mobile phones and USB-powered devices
- Firmware upgradeability

\$149 CCG3PA Evaluation Kit (CY4532)

CCG3PA Solution Example:

Type-C Power Adapter / Mobile Charger

CCG3PA Value

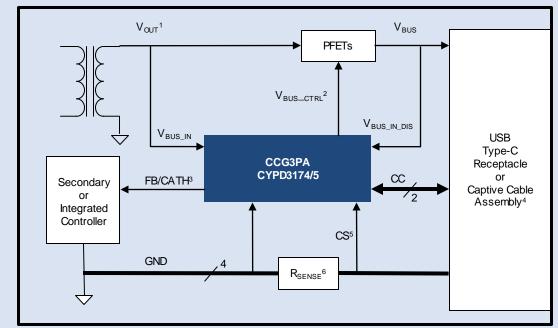
Design Problems

- Power adapter / mobile charger must support latest standards
- Must be turnkey for ease-of-design
- Must be highly integrated to lower BOM cost
- Must be reprogrammable to keep up with USB-IF standards
- Industry standards demand low power for no-load conditions

CCG3PA Solution

- Provides Type-C solution with Power Delivery 3.0 (PD 3.0) with programmable power supply support and Quick Charge 4.0 (QC 4.0)
- Includes an ARM® Cortex®-M0 and certified USB-PD stack
- Integrates voltage regulation, 30-V-tolerant regulator, V_{BUS}-to-CC short protection, high-voltage PFET gate driver and ESD protection
- Supports field upgrades with free, fully-compliant firmware
- Delivers Low Power: 30 µA (Deep Sleep Mode)

Suggested Collateral


Webpages: Type-C, CCG3PA and Reference Design

Datasheet: CCG3PA Datasheet CCG3PA Demo Video Video:

How to Get Started

Contact Sales for CCG3PA Evaluation Board

Type-C Power Adapter/Mobile Charger with CCG3PA V_{OUT}1

New Smartphone Charger with USB-C Receptacle

⁴ A cable permanently attached to the AC adapter

⁵ Current-sensing input

⁶ Resistor used to sense overcurrent

¹ Output voltage of the AC-to-DC adapter

² Signal to control V_{BUS} load switch

³ Output voltage selection using feedback control

CCG3PA Solution Example:

Type-C Car Charger

CCG3PA Value

Design Problems

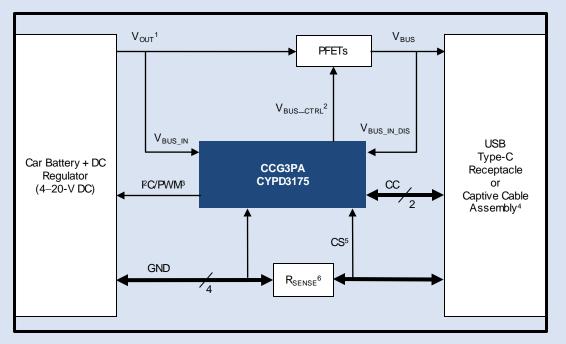
- Car charger must support latest standards
- Must be turnkey for ease-of-design
- Must be highly integrated to lower BOM cost
- Must be reprogrammable to keep up with USB-IF standards
- Industry standards demand low power for no-load conditions

CCG3PA Solution

- Provides Type-C solution with Power Delivery 3.0 (PD 3.0) with programmable power supply support and Quick Charge 4.0 (QC 4.0)
- Includes an ARM® Cortex®-M0 and certified USB-PD stack
- Integrates voltage regulation, 30-V-tolerant regulator, V_{BUS}-to-CC short protection, high-voltage PFET gate driver and ESD protection
- Supports field upgrades with free, fully-compliant firmware
- Delivers Low Power: 30 µA (Deep Sleep Mode)

Suggested Collateral

Webpages: Type-C, CCG3PA and Reference Design


Datasheet:CCG3PA DatasheetVideo:CCG3PA Demo Video

How To Get Started

Contact Sales for CCG3PA Evaluation Board

- ¹ Output voltage of the AC-to-DC adapter
- ² Signal to control V_{BUS} load sw itch
- ³ Output voltage selection using I²C or PWM
- ⁴ A cable permanently attached to the AC adapter
- ⁵ Current-sensing input
- ⁶ Resistor used to sense overcurrent

Type-C Car Charger with CCG3PA

USB-C Charger with USB-PD

CCG3PA Solution Example:

Type-C Power Bank

CCG3PA Value

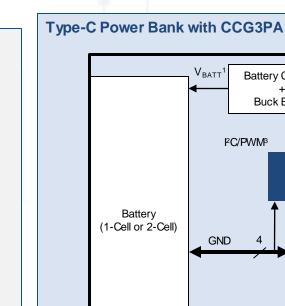
Design Problems

- Power bank must support latest standards
- Must be turnkey for ease-of-design
- Must be highly integrated to lower BOM cost
- Must be reprogrammable to keep up with USB-IF standards
- Industry standards demand low power for no-load conditions

CCG3PA Solution

- Provides Type-C solution with Power Delivery 3.0 (PD 3.0) with programmable power supply support and Quick Charge 4.0 (QC 4.0)
- Includes an ARM® Cortex®-M0 and certified USB-PD stack
- Integrates voltage regulation, 30-V-tolerant regulator, V_{BUS}-to-CC short protection, high-voltage PFET gate driver and ESD protection
- Supports field upgrades with free, fully-compliant firmware
- Delivers Low Power: 30 µA (Deep Sleep Mode)

Suggested Collateral


Webpages: Type-C, CCG3PA and Reference Design

CCG3PA Datasheet Datasheet: Video: CCG3PA Demo Video

How To Get Started

Contact Sales for CCG3PA Evaluation Board

5 Resistor used to sense overcurrent

USB-C Power Bank with USB-PD

Battery

(1-Cell or 2-Cell)

Battery Charger

Buck Boost

PC/PWM3

GND

 V_{BATT}^{1}

V_{BUS_CTRL}²

CCG3PA

CYPD3171

CS4

PC/PWM3

 R_{SENSE}^5

Regulator

Type-C_V_{BUS}

 $V_{\text{BUS_IN}}$

CC

Dp / Dn

Dp / Dn

Type- A_V_{BUS}

USB

Type-C

Receptacle

USB

Type-A

Receptacle

² Signal to control V_{BUS} load sw itch

⁴ Current-sensing input

³ Output voltage selection using I²C or PWM