@ MICROCHIP

TLS AND CRYPTOGRAPHY

AtmeL Hardening TLS using ATECC508A

Prerequisites

e Hardware Prerequisites

¢ AWS Zero Touch Secure Provisioning Kit
o Software Prerequisites

¢ Windows 7 or above

Introduction

The world we live in is a connected world. Today we rely on our phones, computers and
soon |loT devices to communicate, buy goods, travel and work. It is expected that
connected devices or |oT devices, increase exponentially in the near future. The fact is that
there are more phones than people today. The number of smart phones is measure by the
billions and is increasing in a fast pace.

All these devices that are connected to the internet have one thing in common — They rely
on the protocol called TLS (Transport Layer Security) to protect their information in transit.

TLS is a cryptographic protocol designed to provide secure communication over an
insecure infrastructure. This means that, if this protocol is properly deployed, you can open
a communication channel to an arbitrary service on the internet and be reasonably sure
that you're talking to the correct server, and exchange information safely knowing that your
data won't fall into the wrong hands and that it will be received intact.

These is not the case in the real world. Poorly designed systems along with software bugs
can open a back door to an attacker. Aside from this, the simplicity of the RSA algorithm
(which is widely used in most of the systems running TLS), has known weaknesses, such
as the Private Key being stored in software. Anyone with the access to the corresponding
server’s private key can decrypt the communication between the client and it. This type of
attack does not need to happen in real time. An attacker could stablish a long term
operation and record all the encrypted traffic and wait until he obtains the Key. After the
Key has been compromised, it’'s possible to decrypt all previously recorded traffic.

As we will see in the following sections of this document ATECC508 will serve as a secure
hardware storage device to store Keys. It will also provide the hardware acceleration
functionality to preform ECDSA verify and ECDH(E) to stablish the TLS handshake and
secure session establishment.

Table of Contents

PrereqUISITES ... 1
INEFOAUCTION. ... e e e 1
Icon Key 1dentifiers..........ooooeeeeieeeeee e 3
1 NetWorking Layers........coooiiieeeieiiceee e 4
2 TLS and Cryptographycoooiiiiiiiiiiiiieee e 4
21 Transport Layer SECUNLYcoeiiiieiicceeee e e e s eeeeees 5

2.2 Symmetric ENCryptionoviiiiiiee e 5

2.3 ASYMMELNC ENCIYPLION. ..o e 5

2.4 Digital SIGNAtUMEScoieiiiieiee e 6
TLS Record ProtoColccooiiiiiiieeeeeee e 7

4 TLS Handshake ProtoCol.............ceeiiiiiiiiiiiiiiiieeeee e 7
4.1 Understanding the TLS Handshake Procedureccccveveiiiiiiiiiieiiieiececns 8
4.1.2 TLS ClieNt HEllO ..o 9

4.1.3 TLS Server HellO.... .ot e 10

414 TLS CertifiCate ...coooeeeeiiiee et 11

415 TLS Server Key EXChange.........ccccouuiiiiiiiiiiieic e 12

416 TLS Certificate Request.........c.cccoccviiieiiiiiiee e 13

4.1.7 TLS HEllO DONE......coeeeeeeeeeeeeeeeee e 14

4.1.8 TLS Certificateooeeeiieieeeeeeeeeeee s 15

419 TLS Client Key EXChangeccooiuiiieiiiiiiiiiee et 15

4.1.10 TLS Certificate Verifyccccuiiieiieiiiee et 16

4.1.11 TLS Client Change Cipher SPEC........cccouiiiiiiieiiiiiiiee et 16

4112 TLS Client FiNiSN.......ooiiiiiieii e 17

4.1.13 TLS Server Change Cipher SPECccooviiiiiiiiiiiiiiiee e 17

4114 TLS Server FiNiSNccooiiiii e 17

4.1.15 TLS Encrypting MEeSSAgE.......coieiiiiiiiieie ettt 17

5 PKIand ECCB08uuiiiiiiee i e e 18
51 Public Key INfrastruCturecoovviiiiiiiii e 18

5.2 Using ECC508A in a Public Key Infrastructureccccoeeieiieiiiciieec e 19

6 TLSand ECCSH08cccooiiiiiieeeeeere e 20
7 Connecting to AWS |oT using ATECCS508A...........oooeeeiiiiiieeeeeens 21
71 Creating the Root of Trust and Production Signer..........ccccccoviiiiiiiiiiiiiiieneeeeenn. 22

7.2 Registering our Production Signer with AWS 10Tcc.ooviiiiiiiiieeecee e 23
722 AWS I0oT BYOC Hands On......oeiiiiiiiiiiieiieee e 24

7.3 Just-In-Time Registration of the AWS 10T devViCecccuevveeieciiiieeciiiieeee e 35

7.3.1 AWS 0T TLS and JITR Hands- On.........cooviiieiiiiieniieeeeee e 35

8 APPENAIX. i 43
8.1 Lambda Function, Policy Attachment and Device Activationcccceee. 43

9 License Informationooooiiiiiiiii 47

Atmel

Hardening TLS with ECC508

Atmel

Icon Key ldentifiers

LD TP
8 wro

| RESULT

WARNING

a EXECUTE

Highlights Useful Tips and Techniques
Highlights Objectives to be Completed

Highlights the Expected Result of an
Assignment Step

Indicates Important Information

Highlights Actions to be Executed Out of the
Target

Hardening TLS with ECC508

1 Networking Layers

The internet at its core is built on top protocols called Internet Protocol (IP) and
Transmission Control Protocol. These are used to package data into small packages to be
transport. Because the core protocol don’t provide any security at all by themselves anyone
with access to the communication link can gain full access to the data as well as change
the traffic without detection.

When encryption is taken un to account, the attacker might be able to gain access to the
encrypted data, but it wouldn’t be able to decrypt it or modify it. To prevent impersonation
attacks TLS, rely on another important technology besides cryptography called Public Key
Infrastructure PKI which ensures that the traffic is sent to the correct recipient.

To have a better understanding where TLS fit, we will look at the Open Systems
Interconnection (OSI) model. This is a conceptual model that can be used to explain
network communications. All functionality is mapped in 7 different layers. The bottom layer
is the closest to the physical communication link and at the top is the application layer.

OSILayer Description il
protocols
S N HTTP, SMTP,
7 Application Application data IMAP
. Data representation, conversion,
6 Presentation g SSL/TLS
encryption
5 Session Management of multiple connections
4 Transport Reliable delivery of packets and TCP, UDP

streams

Routing and delivery of datagrams

Network
8 between network nodes

IP, IPSec

2 Datalink Reliable local data connection (LAN) Ethernet

Direct physical data connection
(cables)

1 Physical CAT5

Figure 1-1. Open Systems Interconnection (OSl) model
TLS sits above the TCP but below the higher-level protocols such as HTTP.

2 TLS and Cryptography

Transport Layer Security (TLS) is a protocol that provides communication security to
communications on the internet. It is the most widely security protocol used today. As we will see
in subsequent sections TLS is composed of two layers: The TLS Handshake Protocol Layer that
allows the Server and Client to authenticate each other, and the TLS Record Protocol Layer which
provides connection security.

Atmel

Hardening TLS with ECC508

21 Transport Layer Security

As mentioned earlier, the TLS protocol protects the communication link or transport layer, which is
where the name comes from.

Security is not the only goal of TLS. It actually has four main goals:
e Cryptographic Security

This is the main purpose of TLS, to enable secure communications between any two parties who
wish to exchange information.

¢ Interoperability

It should be possible for programs and libraries to be created and are able to communicate with
each other using common cryptographic parameters.

o Extensibility
TLS is effectively a framework for development and deployment of cryptographic protocol

2.2 Symmetric Encryption

Symmetric encryption is a method for obfuscation that enables secure transport of data over
insecure communication channels. This method is also known as private-key cryptography by the
fact that it uses the same cryptographic keys for encrypting the plain-text and decryption of the

cipher-text.
Secret key Secret key
Encrypt @ Decrypt
Original Encrypted Original
document BOB document ALICE document
Figure 2-1. Bob and Alice share the same Private-Key for encryption and
decryption

2.3 Asymmetric Encryption

Symmetric encryption does a great job t handling large amount dog data at great speeds, but it's
not that efficient as soon as the number of parties involved increases:

e Members of the same group must share the same key. The more people join in the group,
the more expose the group is.

Atmel 5

Hardening TLS with ECC508

o A different key could be used for each person joining the group, but this collapses as the
group gets bigger

e Symmetric encryption can’t be used on unattended systems to secure data. This is do the
fact that the process can be reversed by using the same key. A compromise to such a
system leads to the compromise of all the data stored in the system.

Asymmetric encryption is a different approach to encryption that uses two keys instead of one.
One of the keys is called a Private-Key and the other one is known as the Public-Key. As the
name indicates one of the keys must be kept private and the other can be shared.

There’s a special mathematical relationship between these keys that enables useful features such
as sign-verify or encryption-decryption.

Asymmetric encryption makes communication in large groups easier. This is because you can
share your public key widely and anyone can send you a message that you can read and also
verify by them signing the message with their private key.

Alice’s public key Alice’s private key

| &= || &= | T

Encrypt @ Decrypt

Original Encrypted Original
document BOB document ALICE document

A 4
A 4

Figure 2-2. Bob uses a Public-Key to encrypt and Alice uses a Private-Key to Decrypt

2.4 Digital Signatures

Digital Signatures is a cryptographic scheme that allows us to verify the authenticity of a digital
message or document. The Message Authentication Code (MAC) is a type of digital signature. A
MAC is a cryptographic function that extend hashing with authentication, in other words, is a
keyed-hash. Only does in possession of the hashing key can produce a valid MAC.

Digital signatures are possible with the help of public key cryptography. Its asymmetric nature can
be exploit to device an algorithm that allows a message to be signed by a private key and be
verified with its corresponding public key. The sign and verify process depends on the selected
public key cryptosystem. For example, Elliptic Curve Cryptography (ECC), where the ECDSA
cryptographic algorithm will sign a message using a private key and verify the message using its
corresponding public key.

Atmel

Hardening TLS with ECC508

The process for signing a message is as follows

1.
2.
3.

3

Calculate the hash of the document you want to sign using for example SHA256
Use ECDSA to sign the hash of the data with the private key

To verify the message, the public key associated with the private key needs to be send with
the message and its signature

Used ECDSA to verify the message, having as inputs the Hash of the message, its
signature and the public key.

TLS Record Protocol

TLS is a cryptographic protocol designed to secure communications that consist of an arbitrary
number of messages between two parties. At a high level, TLS is implemented via the record
protocol, which is in charge of the following aspects of the communication:

Atmel

Message Transport

The record protocol transports opaque data buffers submitted to it by other layers in
packets of max 16382 bytes. If a data payload is longer, it will split it into smaller chucks.

Encryption and Message Validation

Initially in a brand new connection, messages are transported without any protection. This
is necessary so the first negotiation can take place. However, once the handshake is
complete, the record layer starts to apply encryption and integrity validation according to
the negotiated connection parameters.

Compression
This feature is no longer used.

Extensibility

The record protocol takes care of data transport and encryption, but delegates all other
features to sub-protocols. This approach makes TLS extensible, because new sub-
protocols can be added easily. With encryption handled by the record protocol, all sub-
protocols are automatically protected using the negotiated connection parameters.

TLS Handshake Protocol

The TLS Handshake is the process during which the sides negotiate connection
parameters and perform authentication. There can be many variations in the exchange,
depending on the configuration and supported protocol extensions, but three are the ones
that are most widely use:

Hardening TLS with ECC508

41

e Full Handshake with server authentication
e Abbreviated handshake that resumes an earlier session
e Handshake with client and server authentication

In this document we will present the Full Handshake with Server Authentication

Understanding the TLS Handshake Procedure

Every TLS connection starts with a handshake. If the client hasn’t previously established a
session with the server, the two sides will execute a full handshake in order to negotiate a
TLS session. During this handshake, the client and server will perform four main activities:

e Exchange capabilities and agree on desired connection parameters

o Validate the presented certificates or authentication

o Agree on a shared master secret that will be used to protect the session

¢ Verify that the handshake messages haven’t been modified by a third party

In practice, steps 2 and 3 are part of a single step called key exchange or session
establishment

This is the sequence followed by a complete TLS handshake with server authentication

1. Client begins a new handshake and submits its capabilities to the server

2. Server selects connections parameters

3. Server sends its certificate chain

4. Depending on the selected key exchange, the server sends additional information
required to generate the master secret

5. Server communicates acceptable Certificate Public Key and Signature Algorithm

6. Server indicates completion of its side of the negotiation

7. Client sends Certificate Chain

8. Client sends additional information required to generate the master secret

9. Client proves the possession of the Private Key corresponding to the Public Key in

previously sent Certificate by signing all the Hand Shake messages exchanged until this
point

10. Client switches to encryption and informs the Server
11.Ready for Encrypted Application Data
12.Server switches to encryption and informs the Client
13.Ready for Encrypted Application Data

Atmel

Hardening TLS with ECC508

At this point the connection is established and the parties can begin to send application
data securely.

Client Server

o ClientHello >

< ServerHello e
< Certificate 0

<% ServerKeyExchange o

< Certificate Request 6

< ServerHelloDone e
e Certificate >

o ClientKEyExchange >
9 Certificate Verify =
@ ChangeCipherSpec >

@ Finish >

ChangeCipherSpec

e

< Finished

Figure 4-1. Full TLS handshake with both Client and Server Authentication

4.1.2 TLS Client Hello

The Client Hello message is always the first message sent in a new handshake. It's used to
communicate the client capabilities and preferences to the server. Clients send this message at
the beginning of a new connection. A TLS session empowered by the ATECC508, will have the
Client Hello message that looks like the one below.

Atmel 9

Hardening TLS with ECC508

A m i@ R Q&=

= WireSharkLog_Training.pcapng

EFesI Eaaal
| 1 tcp.port == 8883 or tcp.port == 55626 or ip.src == 192.168.2.4 BED -] epression.. +
No. Time Source Destination Protocol Length Info
23 1.711252 192.168.2.4 54.200.238.99 i 54 57326 - 8883 [ACK] Seq=1 Ack=1 Win=4338 Len=0
24 1.960907 192.168.2.4 54.200.238.99 TLSV1.2 114 Client Hello
25 2.070139 54.200.238.99 192.168.2.4 TCp 54 8883 - 57326 [ACK] Seq=1 Ack=61 Win=17922 Len=0

» Frame 24: 114 bytes on wire (912 bits), 114 bytes captured (912 bits) on interface @
» Ethernet II, Src: NewportM_f4:16:b6 (f8:f@:05:f4:16:b6), Dst: f6:5c:89:bc:b3:64 (f6:5c:89:bc:b3:64)
» Internet Protocol Version 4, Src: 192.168.2.4, Dst: 54.200.238.99
» Transmission Control Protocol, Src Port: 57326 (57326), Dst Port: 8883 (8883), Seq: 1, Ack: 1, Len: 60
v Secure Sockets Layer
v TLSv1.2 Record Layer: Handshake Protocol: Client Hello
Content Type: Handshake (22)
Version: TLS 1.2 (0x0303)
Length: 55
Handshake Protocol: Client Hello
Handshake Type: Client Hello (1)

<

Length: 51
Version: TLS 1.2 (0x0@303)
v Random

GMT Unix Time: Aug 18, 2026 07:33:41.000000000 MDT

Random Bytes: 2fe16f@b87127aace7259e7c4a43c06218e4876084413284. ..
Session ID Length: @

Cipher Suites Length: 2
Cipher Suites (1 suite)

Cipher Suite: TLS_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256 (@xc02b)
Compression Methods Length: 1
Compression Methods (1 method)

Compression Method: null (@)
Extensions Length: 8
Extension: signature_algorithms

Type: signature_algorithms (0x@00d)

Length: 4

Signature Hash Algorithms Length: 2
v Signature Hash Algorithms (1 algorithm)

v Signature Hash Algorithm: 0x0403

Signature Hash Algorithm Hash: SHA256 (4)
Signature Hash Algorithm Signature: ECDSA (3)

<

Cipher Suite supported by Client

<

<

Figure 4-2. ECC508A TLS Client Hello Message

In this case the client sends to the server that its capabilities are:
e Elliptic Curve secp256r1
e ECDHE
e ECDSA
e AES128
e SHA256

Based on ECC508A capabilities (ECC p256, ECDHE, ECDSA and SHA256)

4.1.3 TLS Server Hello

The TLS Server Hello message will communicate the selected connection parameters back
to the client. This message is similar in structure to Client Hello but contains only one

option per field. A TLS session empowered by the ATECC508, will have the Server Hello
message that looks like the one below.

Atmel

Hardening TLS with ECC508

» Frame 27: 984 bytes on wire (7872 bits), 984 bytes captured (7872 bits) on interface @
» Ethernet II, Src: f6:5c:89:bc:b3:64 (f6:5c:89:bc:b3:64), Dst: NewportM_f4:16:b6 (f8:70:05:4:16:b6)
» Internet Protocol Version 4, Src: 54.200.238.99, Dst: 192.168.2.4
» Transmission Control Protocol, Src Port: 8883 (8883), Dst Port: 57326 (57326), Seq: 1389, Ack: 61, Len: 930
» [2 Reassembled TCP Segments (2318 bytes): #26(1388), #27(930)]
v Secure Sockets Layer
v TLSv1.2 Record Layer: Handshake Protocol: Multiple Handshake Messages

Content Type: Handshake (22)

Version: TLS 1.2 (0x@303)

Length: 2313

v Handshake Protocol: Server Hello
Handshake Type: Server Hello (2)

Length: 70
Version: TLS 1.2 (0x0303)
v Random
GMT Unix Time: Sep 1, 2016 11:09:50.000000000 MDT
Random Bytes: 6190fdda76 26 252308678191cf7346:

Session ID Length: 32
Session ID: 57c860dedcScef604elbfed6041aabf887bbcIcf278e186f. ..

Compression Method: null (0)

[XON] I WireSharkLog_Training.pcapng
4 () P & =@ BB E ==
AW g ® KRB QeEsEFH= = QQQE
Ml [tcp.port == 8883 or tcp.port == 55626 o ip.src ==192.168.2.4| A - Epression.. +
No. Time Source Destination Protocol Length Info
25 2.070139 54.200.238.99 192.168.2.4 Tcp 54 8883 - 57326 [ACK] Seq=1 Ack=61 Win=17922 Len=0
26 2.072456 54.200.238.99 192.168.2.4 TP 1442 [TCP segment of a reassembled PDU]
27 2.073982 54.200.238.99 192.168.2.4 TLSv1.2 984 Server Hello, Certificate, Server Key Exchange, Certificate Request, Server Hello Done
28 2.083061 192.168.2.4 54.200.238.99 TCcP 54 57326 - 8883 [ACK] Seq=61 Ack=1389 Win=4338 Len=0
29 2.083450 192.168.2.4 54.200.238.99 TCP 54 57326 - 8883 [ACK] Seq=61 Ack=2319 Win=4338 Len=0

Eipher Suite: TLS_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256 (0xc@2b) Cipher Suite confirmed to Client

Figure 4-3. ECC508A TLS Server Hello Message

Now, the Server will acknowledge the same connection parameters that the Client

requested

e Elliptic Curve secp256r1
e ECDHE
e ECDSA
e AES128
e SHA256

Based on ECC508A capabilities (ECC p256, ECDHE, ECDSA and SHA256)

4.1.4 TLS Certificate

In the TLS Certificate message, the Server will carry its X.509 certificate chain. These are
provided one after another in ASN.1 DER encoding. The main certificate must be sent
first, with all of the intermediate certificates following in the correct order. A TLS session
empowered by the ATECC508, will have the Certificate message that looks look like the

one below.

Atmel

11

Hardening TLS with ECC508

41.5

I WireSharkLog_Training.pcapng

® ®Q Q IF

883 or tcp.port 3 | Egression.. +
No. Time Source Destination Protocol Lengtn info

25 2.070139 54.200.238.99 192.168.2.4 TP 54 8883 - 57326 [ACK] Seq=1 Ack=61 Win=17922 Len=0

26 2.072456 54.200.238.99 192.168.2.4 TP 1442 [TCP segment of a reassembled PDU]

27 2.973982 54.200.238.99 192.168.2.4 TLSv1.2 984 Server Hello, Certificate, Server Key Exchange, Certificate Request, Server Hello Done

28 2.083061 192.168.2.4 54.200.238.99 TP 54 57326 - 8883 [ACK] Seq=61 Ack=1389 Win=4338 Len=0

29 2.083450 192.168.2.4 54.200.238.99 TCp 54 57326 - 8883 [ACK] Seq=61 Ack=2319 Win=4338 Len=0

Cipher Suite: TLS_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256 (@xc@2b)
Compression Method: null (0)

v Handshake Protocol: Certificate
Certificate (11)

Certificates Length: 2046
v Certificates (2046 bytes)
Certificate Length: 906
v Certificate: 1020210 12a92bb7... (id-at iot.us-west-2.amazonaws. com, id-at-organizationName=Amazon.com, Inc.,id-at-localityName=Seattle,id-at-st:
v signedCertificate
version: v3 (2)
serialNumber: ©x148b52d5d212a92bb79b@dead9370c10
signature (is0.2.840.10045.4.3.2)
Algorithm Id: 1.2.840.10045.4.3.2 (is0.2.840.10045.4.3.2)
issuer: rdnSequence ()
» rdnSequence: 4 items (id-at-commonName=Symantec Class 3 ECC 256 bit SSL CA - G2, id-at-organizationalUnitName=Symantec Trust Network, id-at-organizationName=Symantec Corporation,id-at|
validity
subject: rdnSequence (9)
» rdnSequence: 5 items (id-at-commonName=*.iot.us-west-2. com, id-at-or i com, Inc.,id-at-localityName=Seattle, id-at-stateOrProvinceName=Washington, id-at-co
SubjectPublicKeyInfo
v algorithm (id-ecPublicKey)
Algorithm Id: 1.2.840.10045.2.1 (id-ecPublicKey) Cryptograpic Algorithm for Public Key is Elliptic Curve secp256r1
v ECParameters: namedCurve (@)
namedCurve: 1.2.840.10045.3.1.7 (secp256r1)
Padding: ©
subjectPublicKey: 1173df2a602a. . .
» extensions: 8 items
» algorithmIdentifier (iso.2.840.10045.4.3.2)
Padding: @
encrypted: 304402204d75910dd476e3f694f1426a84b6acbc53b4b9af. ..
Certificate Length: 1134
v Certificate: 3082046230820352200302010202103f9287be9d1dada37a
v signedCertificate
version: v3 (2)
serialNumber: @x3f9287be9d1dada37a9df6282e775ac4
signature (sha256WithRSAEncryption)
Algorithm Id: 1.2.840.113549.1.1.11 (sha256WithRSAEncryption)
issuer: rdnSequence ()
» 5 items (id. iSign Class 3 Public Primary Certification ,id-at-organizationalUnitName=(c) 2006 VeriSign, Inc. - For auth,id-at-organizationalUnitName=Ve
validity
subject: rdnSequence (@)
subjectPublicKeyInfo
» algorithm (id-ecPublicKey)
Padding: @
subjectPublicKey: 040flba49ld7e7ace7d14edeb7645bel8f7f6e04d3ab38db. ..
» extensions: 8 items
» algor fier (sha yption)
Padding: @
encrypted: 0c30651705a59375a2f1b131ad701fe76aa8c842b2efalsf. ..

<

<

«v

v

(id-at-commonName=Symantec Class 3 ECC 256 bit SSL CA - G2,id-at-organizationalUnitName=Symantec Trust Network, id-at-organi:

<

<

«vv

Figure 4-4. ECC508A TLS Certificate Message

TLS Server Key Exchange

The purpose of the Server Key Exchange message is to carry additional information that is
needed for the key exchange. A TLS session empowered by the ATECC508, will have the

Server Key Exchange message that looks like the one below.

Atmel

Hardening TLS with ECC508

41.6

Atmel

eoe P WireSharkLog_Training.pcapng
& PN < - = B S = =
4 m e KRB Qes2=E38= = qaaarfr
| 2 tcp.port == 8883 or tcp.port == 55626 or ip.src == 192168.2.4 FAED | epresson.. +
No. Time Source Destination Protocol Lengt info
25 2.070139 54.200.238.99 192.168.2.4 T 54 8883 - 57326 [ACK] Seq=1 Ack=61 Win=17922 Len=0
26 2.072456 54.200.238.99 192.168.2.4 TCP 1442 [TCP segment of a reassembled PDU]
27 2.073982 54.200.238.99 192.168.2.4 TLSv1.2 984 Server Hello, Certificate, Server Key Exchange, Certificate Request, Server Hello Done
28 2.083061 192.168.2.4 54.200.238.99 TCP 54 57326 - 8883 [ACK] Seq=61 Ack=1389 Win=4338 Len=0
29 2.083450 192.168.2.4 54.200.238.99 TCP 54 57326 - 8883 [ACK] Seq=61 Ack=2319 Win=4338 Len=0
Frame 27: 984 bytes on wire (7872 bits), 984 bytes captured (7872 bits) on interface @
Ethernet II, Src: (, Dst: NewportM_f4:16:b6 (f8:f0:05:f4:16:b6)

Internet Protocol Version 4, Src: 54.200.238.99, Dst: 192.168.2.4
Transmission Control Protocol, Src Port: 8883 (8883), Dst Port: 57326 (57326), Seq: 1389, Ack: 61, Len: 930
[2 Reassembled TCP Segments (2318 bytes): #26(1388), #27(930)]
Secure Sockets Layer
v TLSv1.2 Record Layer: Handshake Protocol: Multiple Handshake Messages

Content Type: Handshake (22)

Version: TLS 1.2 (0x0303)

Length: 2313

v Handshake Protocol: Server Hello
Handshake Type: Server Hello (2)

«vvvvy

Length: 70
Version: TLS 1.2 (x0303)
v Random

GIT Unix Time: Sep 1, 2016 11:09:50.000000000 MDT
Randon Bytes: 61907dda767acb660c99262a225a308678191cf73462¢e5T . ..
session ID Length: 32
Session 1D: 278e186f...
Cipher Suite: TLS_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256 (0xco2b)
Compression Method: null (o)
» Handshake Protocol: Certificate
Handshake Type: Server Key Exchange (12)
Length: 144
v EC Diffie-Hellnan Server Params
Curve Type: named_curve (0x03)
Named Curve: secp256rl (8x0017)
Pubkey Length: 65
Pubkey: 04716740dd2a654293ba9919bbeaaclb69cd63dcbebia2... | Server's Public Key to be exchange for ECDHE.
v Signature Hash Algorithm: 0x0403
Signature Hash Algorithm Hash: SHA256 (4)
Signature Hash Algorithm Signature: ECOSA (3)
Signature Length: 71
Signature: 3045022100123a3b5C171157b93c5bf1252022907ddc63. . .

Figure 4-5. ECC508A TLS Server Key Exchange Message

In this case, the server will exchange its Public-Key with the Client. This will be used during
the creation or the encryption key by applying ECDHE. This process takes place after the

certificate chain has been verified.

TLS Certificate Request

By sending the TLS Certificate Request the Server request the client authentication and
communicates acceptable Certificate, Public-Key and Signature algorithms to the Client. A

TLS session empowered by the ATECC508, will have the Server Certificate Request

message that looks like the one below

Hardening TLS with ECC508

13

41.7

% WireSharkLog_Training.pcapng

QaQa i

RE Qe EF I =

0 tcp.port == 8883 or tep.port == 56626 or ip.src == 192.168.2.4

No. Time Source Destination Protocol Lengtn info
25 2.070139 54.200.238.99 192.168.2.4 TP 54 8883 - 57326 [ACK] Seq=1 Ack=61 Win=17922 Len=0
26 2.072456 54.200.238.99 192.168.2.4 TcP 1442 [TCP segment of a reassembled PDU]
27 2.073982 54.200.238.99 192.168.2.4 TLSv1.2 984 Server Hello, Certificate, Server Key Exchange, Certificate Request, Server Hello Done
28 2.083061 192.168.2.4 54.200.238.99 TcP 54 57326 - 8883 [ACK] Sex 389 Win=4338 Len=0
29 2.083450 192.168.2.4 54.200.238.99 TP 54 57326 - 8883 [ACK] Sex 319 Win=4338 Len=0

v Handshake Protocol: Server Hello
Handshake Type: Server Hello (2)

Length: 70
Version: TLS 1.2 (@x@303)
v Random

GMT Unix Time: Sep 1, 2016 11:09:50.000000000 MDT
Random Bytes: 6190fdda767acb660c9926aa225a308678191cf73462ee5f. ..

Session ID Length: 32
Session ID: 57c860dedcScef60delbfed6041aabf887bbcIcT278e186f . ..
Cipher Suite: TLS_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256 (9xce2b)
Compression Method: null (0)

» Handshake Protocol: Certificate

» Handshake Protocol: Server Key Exchange

Handshake Type: Certificate Request (13)
Length: 30
Certificate types count: 3
» Certificate types (3 types)
Signature Hash Algorithms Length: 22
v Signature Hash Algorithms (11 algorithms)
v Signature Hash Algorithm: @x0603
Signature Hash Algorithm Hash: SHA512 (6)
Signature Hash Algorithm Signature: ECDSA (3)
v Signature Hash Algorithm: ©x@601
Signature Hash Algorithm Hash: SHA512 (6)
Signature Hash Algorithm Signature: RSA (1)
v Signature Hash Algorithm: 0x0503
Signature Hash Algorithm Hash: SHA384 (5)
Signature Hash Algorithm Signature: ECDSA (3)
v Signature Hash Algorithm: x@501

Hashing and Signature algorithm
requested by the Server to Client

v Signature Hash Algorithm: €x0401

Signature Hash Algorithm Hash: SHA256 (4)

Signature Hash Algorithm Signature: RSA (1)
v Signature Hash Algorithm: 0x0303

Signature Hash Algorithm Hash: SHA224 (3)

Signature Hash Algorithm Signature: ECDSA (3)
v Signature Hash Algorithm: 0x0301

Signature Hash Algorithm Hash: SHA224 (3)

Signature Hash Algorithm Signature: RSA (1)
v Signature Hash Algorithm: 0x0203

Signature Hash Algorithm Hash: SHAL (2)

Signature Hash Algorithm Signature: ECDSA (3)
v Signature Hash Algorithm: 0x0201

Signature Hash Algorithm Hash: SHA1 (2)

Signature Hash Algorithm Signature: RSA (1)
v Signature Hash Algorithm: 0x0202

Signature Hash Algorithm Hash: SHA1 (2)

Signature Hash Algorithm Signature: DSA (2)

v Handshake Protocol: Certificate Request

Figure 4- ECC508A TLS Server Certificate Request Message

TLS Hello Done

The Server Hello message indicates that the Server has sent all necessary messages for

the Hand Shake to take place. The Server will now wait for further messages from the
client.

™ WireSharkLog_Training.pcapng

C) Qaaq i
3 -] epression. +
25 2.070139 54.200.238.99 192.168.2.4 TCP 54 8883 - 57326 [ACK] Seq=1 Ack=61 Win=17922 Len=0
26 2.072456 54.200.238.99 192.168.2.4 TCP 1442 [TCP segment of a reassembled PDU]
27 2.073982 54.200.238.99 192.168.2.4 TLSv1.2 984 Server Hello, Certificate, Server Key Exchange, Certificate Request, Server Hello Done
28 2.083061 192.168.2.4 54.200.238.99 TCP 54 57326 - 8883 [ACK] Seq=61 Ack=1389 Win=4338 Le
29 2.083450 192.168.2.4 54.200.238.99 TCP 54 57326 - 8883 [ACK] Seq=61 Ack=2319 Win=4338 Len=0

Frame 27: 984 bytes on wire (7872 bits), 984 bytes captured (7872 bits) on interface @
Ethernet IT, Src: 76:5c:89:bc:b3:64 (f6:5C:89:bC:b3:64), Dst: NewportM_f4:16:b6 (f8:f0:05:f4:16:b6)
Internet Protocol Version 4, Src: 54.200.238.99, Dst: 192.168.2.4
Transnission Control Protocol, Src Port: 8883 (8883), Dst Port: 57326 (57326), Seq: 1389, Ack: 61, Len: 930
[2 Reassembled TCP Segnents (2318 bytes): #26(1388), #27(930)]
Secure Sockets Layer
v TLSv1.2 Record Layer: Handshake Protocol: Multiple Handshake Messages
Content Type: Handshake (22)
Version: TLS 1.2 (0x0303)
Length: 2313
v Handshake Protocol: Server Hello
Handshake Type: Server Hello (2)
Length: 70
Version: TLS 1.2 (0x0303)
v Random
GMT Unix Tinme
Random Bytes: 6
Session ID Length: 32
Session ID: b8g 278186 .
Cipher Suite: TLS_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256 (@xce2b)
Compression Method: null (@)
Handshake Protoco
Handshake Protoco
Handshake Protoco

«vvvvy

Sep 1, 2016 11:00:50.080000000 MDT

>
>
>
v

Handshake Type: Server Hello Done (14)
Length: 0

ECC508A TLS Server Hello Done Message

Hardening TLS with ECC508

Atmel

4.1.8 TLS Certificate

41.9

Atmel

In the TLS Client Certificate Message, Client sends its Certificate chain to Server.

AW g e RE]

(11 [tcp.port == 8883 or tep.port == 55626 or ip.src == 192.168.2.4

3 -] ewresson.. +
No. Time Source Destination Protocol Length info
28 2.083061 192.168.2.4 54.200.238.99 TP 54
29 2.083450 192.168.2.4 54.200.238.99 TcP 54
30 3.536522 192.168.2.4 54.200.238.99 TLSv1.2 1007 Certificate
31 3.726014 54.200.238.99 192.168.2.4 TCcP 54 8883 - 57326 [ACK] Seq=2319 Ack=1014 Win=19060 Len=0
32 4.282974 192.168.2.4 54.200.238.99 TLSv1.2

129 Client Key Exchange
v Secure Sockets Layer
v TLSv1.2 Record Layer: Handshake Protocol: Certificate
Content Type: Handshake (22)
Version: TLS 1.2 (x0303)
Length: 948
v Handshake Protocol: Certificate
Handshake Type: Certificate (11)
Length: 944
Certificates Length: 941
v Certificates (941 bytes)
Certificate Length: 434

v Certificate: 308201ae30820153a0030201020211771357af76a525c1af... (id-at-commonName=Example ATECC5@8A Device,id-at-organizationName=Example Organization)
v signedCertificate

version: v3 (2)
serialNumber: @x771357af76a525c1afc68849b5b1278102
Signature (150.2.840.10045.2.3.2)

Algorithm Id: 1.2.840.10045.4.3.2 (is0.2.840.10045.4.3.2)
v issuer: rdnSequence (@)
2 items (id-at

<

> le ATECC508A Signer 0000, id-at-organizationName=Example Organization)
validity
subject: rdnSequence (0)
» rdnSequence: 2 items (id-at-commonName=Example ATECC508A Device,id-at-organizationName=Example Organization)
v subjectPublicKeyInfo
v algorithm (id-ecPublicKey)
Algorithm Td: 1.2.840.10045.2.1 (id-ecPublicKey)
v ECParameters: namedCurve (0)
namedCurve: 1.2.840.10045.3.1.7 (secp256r1)

«v

Client Certificate Chain

Padding: 0 using Microchip Root and
subjectPublicKey: 2355ec431 f 6c788a. .. .
» extensions: 1 item Signer CA

<

algorithmIdentifier (is0.2.840.10045.4.3.2)

Algorithm Td: 1.2.840.10045.4.3.2 (i50.2.840.10045.4.3.2)
Padding: 0
encrypted: 3046022100a2cb7878228dc3162416a8d393ca7378739ca7. ..

v Certificate: 308201f130820197a0030201020211517fdd83138b2688c1... (id-at-commonName=Example ATECC5@8A Signer 0@00,id-at-organizationName=Example Organization)|
v signedCertificate

version: v3 (2)
serialNumber: 0x517fdd83138b2688c14bdfc51c@5c6cbol
signature (is0.2.840.10045.4.3.2)

Algorithm Td: 1.2.840.10045.4.3.2 (is0.2.840.10045.4.3.2)
VISTOerT T TeT
> 2 items (id-at
validity
subject: rdnSequence (0)
» rdnSequence: 2 items (id-at-commonName=Example ATECC5@8A Signer 0000, id-at-organizationName=Example Organization)
subjectPublicKeyInfo
v algorithm (id-ecPublicKey)

Algorithm Td: 1.2.840.10045.2.1 (id-ecPublicKey)
v ECParameters: namedCurve (0)
namedCurve: 1.2.840.10045.3.1.7 (secp256r1)
Padding: 0
subjectPublicKey: d8e9269219. . .

<

le ATECC508A Root CA,id-at-organizationName=Example Organization)

«v

<

ECC508A TLS Client Certificate Message

TLS Client Key Exchange

The Client Key Exchange message carries the Client’s contribution to the key exchange. Its
content depends on the negotiated cipher suite. A TLS session empowered by the
ATECC508 will have the Client Key Exchange message that looks like the one below

15

Hardening TLS with ECC508

Am 3@ RE Q&= EE aaaE
[[tcp.port == 8883 or tcp.port == 55626 or ip.src == 192.168.2.4. BT -] expression.. +
No. Time Source Destination Protocol Length info

28 2.083061 192.168.2.4 54.200.238.99 TP 54 57326 - 8883 [ACK] Seq=61 Ack=1389 Win=4338 Len=0

29 2.083450 192.168.2.4 54.200.238.99 TP 54 57326 - 8883 [ACK] Seq=61 Ack=2319 Win=4338 Len=0

30 3.536522 192.168.2.4 54.200.238.99 TLSv1.2 1007 Certificate

31 3.726914 54.200.238.99 192.168.2.4 TP 54 8883 - 57326 [ACK] Seq=2319 Ack=1014 Win=19060 Len=0

32 4.282974 192.168.2.4 54.200.238.99 TLsv1.2 129 Client Key Exchange

Frame 32: 129 bytes on wire (1032 bits), 129 bytes captured (1032 bits) on interface @
Ethernet IT, Src: NewportM_f4:16:b6 (f8:f0:05:f4:16:b6), Dst: f6:5c:89:bc:b3:64 (f6:5c:89:bc:b3:64)
Internet Protocol Version 4, Src: 192.168.2.4, Dst: 54.200.238.99
Transmission Control Protocol, Src Port: 57326 (57326), Dst Port: 8883 (8883), Seq: 1014, Ack: 2319, Len: 75
Secure Sockets Layer
v TLSv1.2 Record Layer: Handshake Protocol: Client Key Exchange
Content Type: Handshake (22)
Version: TLS 1.2 (0x0303)
Length: 70
v Handshake Protocol: Client Key Exchange
Handshake Type: Client Key Exchange (16)
Length: 66
v EC Diffie-Hellman Client Params

Pubkey Length: 65 _— . i
[Fibkey: 0a6016e0amsb2355ecas 3e5830b0caT30adacasrecresa. -] Client's Public Key exchange to use with ECDHE

«vvvy

Figure 4-9. ECC508A TLS Client Key Exchange Message

4.1.10 TLS Certificate Verify

The Client uses the Certificate Verify to prove the possession of the Private Key
corresponding to the Public Key in the previously sent Client Certificate. This message
contains a Signature of all the handshake messages exchanged until this point. A TLS

session empowered by the ATECC508 will have the Certificate Verify message that looks
like the one below

e0e % WireSharkLog_Training.pcapng
! @ - = T o ==

11 [tcp.port == 8883 or tcp.port == 55626 or ip.src == 192.168.2.4 FAED -] expression.. +

No. Time Source Destination Protocol Length Info
32 4.282974 192.168.2.4 54.200.238.99 TLSv1.2 129 Client Key Exchange
33 4.422758 54.200.238.99 192.168.2.4 TP 54 8883 -+ 57326 [ACK] Seq=2319 Ack=1089 Win=19060 Len=0
35 4.750975 54.200.238.99 192.168.2.4 TP 54 8883 - 57326 [ACK] Seq=2319 Ack=1173 Win=19060 Len=0
36 4.791402 192.168.2.4 54.200.238.99 TLSv1.2 60 Change Cipher Spec

» Frame 34: 138 bytes on wire (1104 bits), 138 bytes captured (1104 bits) on interface 0

» Ethernet II, Src: NewportM_f4:16:b6 (f8:70:05:f4:16:b6), Dst: f6:5c:89:bc:b3:64 (f6:5c:89:bc:b3:64)

» Internet Protocol Version 4, Src: 192.168.2.4, Dst: 54.200.238.99

» Transmission Control Protocol, Src Port: 57326 (57326), Dst Port: 8883 (8883), Seq: 189, Ack: 2319, Len: 84

v Secure Sockets Layer

v TLSv1.2 Record Layer: Handshake Protocol: Certificate Verify
Content Type: Handshake (22)
Version: TLS 1.2 (0x0303)
Length: 79
v Handshake Protocol: Certificate Verify
Handshake Type: Certificate Verify (15)

Length: 75 pe . P
v Signature Hash Algorithm: @x0403 Certificate Chain has been verified
Signature Hash Algorithm Hash: SHA256 (4) 0
Signature Hash Algorithm Signature: ECDSA (3) successfully allowing for ECDHE to proceed

Signature length: 71
Signature: 304502204521f1d2333082a2c078d54d8afad2419ea20c28. . .

with creation of encryption key

Figure 4-10. ECCS508A TLS Verify Certificate Message

4.1.11 TLS Client Change Cipher Spec

The Client Change Cipher Spec message is a signal that the Client obtained enough
information to create the connection parameters, generated the encryption keys and will
now switch to encrypted communications.

Atmel

Hardening TLS with ECC508

[XON] % WireSharkLog_Training.pcapng
y e @ A B S == T
QLN R QesEFI S = QQafE
1 [tcp.port == 8883 or tcp.port == 55626 or ip.src == 192.168.2.42 -] Epresson.. +
No. Time Source Destination Protocol Length Info
37 4.903681 54.200.238.99 192.168.2.4 TP 54 8883 - 57326 [ACK] Seq=2319 Ack=1179 Win=19060 Len=0
38 4.927213 192.168.2.4 54.200.238.99 TLSv1.2 99 Hello Request, Hello Request
39 5.029493 54.200.238.99 192.168.2.4 TP 54 8883 - 57326 [ACK] Seq=2319 Ack=1224 Win=19060 Len=0
49 5.041669 54.200.238.99 192.168.2.4 TLSV1.2 136 Change Cipher Spec, Hello Request, Hello Request, Encrypted Alert
41 5.041721 54.200.238.99 192.168.2.4 TP 54 8883 - 57326 [FIN, ACK] Seq=2401 Ack=1224 Win=19060 Len=0

» Frame 40: 136 bytes on wire (1088 bits), 136 bytes captured (1088 bits) on interface 0
» Ethernet II, Src: 76:5c:89:bc:b3:64 (f6:5c:89:bc:b3:64), Dst: NewportM_f4:16:b6 (18:0:05:74:16:b6)
» Internet Protocol Version 4, Src: 54.200.238.99, Dst: 192.168.2.4
» Transmission Control Protocol, Src Port: 8883 (8883), Dst Port: 57326 (57326), Seq: 2319, Ack: 1224, Len: 82
v Secure Sockets Layer
v TLSv1.2 Record Layer: Change Cipher Spec Protocol: Change Cipher Spec
Content Type: Change Cipher Spec (20)
Version: TLS 1.2 (0x0303)
Length: 1
Change Cipher Spec Message
v TLSV1.2 Record Layer: Handshake Protocol: Multiple Handshake Messages
Content Type: Handshake (22)
Version: TLS 1.2 (0x0303)
Length: 40
v Handshake Protocol: Hello Request
Handshake Type: Hello Request (@)
Length: @
v Handshake Protocol: Hello Request
Handshake Type: Hello Request (@)
Length: @
v ILSv1.2 Record Layer: Encrypted Alert

Content Type: Alert (21)

‘L’m::"fzy—'; 1.2 (6x0303) Client has all that it needs to start encrypting application
ength:

Alert Message: Encrypted Alert data

Figure 4-11. ECCS508A TLS Client Change Cipher Spec Message

4.1.12 TLS Client Finish

The Client Finish message is a sign that the Handshake process is complete from the
Client’s perspective

4.1.13 TLS Server Change Cipher Spec

The Server Change Cipher Spec message is a signal that the Server obtained enough
information to create the connection parameters, generated the encryption keys and will
now switch to encrypted communications.

4.1.14 TLS Server Finish

The Server Finish message is a sign that the Handshake process is complete from the
Server’s perspective.

4.1.15TLS Encrypting Message
All application data shared from this point forward will be encrypted data.

Atmel 17

Hardening TLS with ECC508

5 PKIl and ECC508

5.1 Public Key Infrastructure

The Public Key Infrastructure (PKI) was created so we can communicate with someone
that we have never meet before securely, just by sharing its Public Key. The PKI model
relies on a trusted entity known as Certificate Authority which job is to issue trusted
Certificates.

This certificate issued by a Certificate Authority will become the systems Root of Trust. The
Root of Trust will extend a certificate to the OEM which will turn in to the OEM-CA.

g Root of Trust

One Time Event:
Provide Signed Intermediate CA

Wy OEMCA
ulda

Figure 5-1. Establishing your PKI infrastructure

The OEM-CA will create an intermediate CA or Production Signer. The end device will
request a certificate issuance (CSR) to the Signer.

‘ OEM CA

One Time Event:
Sign Microchip Customer Specific Production
Signers with OLM intermediate CA

Production G .
. Customer Specific
Slg_ner Production Signers

Figure 5-2. Creating a Production Signer that will sign the End Device CSR’s

Atmel

Hardening TLS with ECC508

The production signer will sign the end device CSR, and thus will give an identity to the end
device.

+
-
J Nw

Production 44 Specific Production

e XX k3 X CSR Signed by the
7 37 3 B B VY Production Signer

,,,,,,,

Figure 5-3. The Production Signer will now Sign the CSR’s

5.2 Using ECC508A in a Public Key Infrastructure

The ECC508A is a device that can store Private Keys securely and use these private Keys
internally in cryptographic algorithms to support a PKI. The cryptographic algorithms that
ECC508A supports are the Elliptic Curve p256, Elliptic Curve Digital Signature Algorithm
(ECDSA) and the Elliptic Curve Diffie-Hellman algorithm (ECDH(E)) and SHA256.

ECDSA
o It's a signing algorithm that uses elliptic curve cryptography.
e ECDH

o It's a Key exchange agreement that allows two parties, each having an elliptic
curve public-private key, to establish a common key to secure their
communications.

e Elliptic Curve p256 Key Generator
¢ RNG (FIPS Compliant)
o Random Number Generator
o SHA256
o SHA256 Hashing algorithm engine

The ECC508A will also allow you to store compressed X.509 certificates that the Host can
decompress.

Atmel 19

Hardening TLS with ECC508

These features allow the ECC508A to be used as a cryptographic coprocessor for
stablishing a Public Key Infrastructure and also be used in a TLS session establishment
between a Host and a Client.

The PKI in its most complete form using an ECC508A device to store the Private Keys and
its relevant compressed certificates would look like this.

Root of Trust
Q Empowered by
the ECC508A

l OEM CA
'Q Empowered by
F N the ECC508A

Prod lJCtiOI"I Specific Production

i
) ’ Signers Empowered
Signer by the ECC508A

CSR Signed by the
Production Signer

End Devices with an
Identity empowered
by the ECC508A

Figure 5-4. A Public Key Infrastructure empowered by the ECC508A
6 TLS and ECC508

As mentioned in the previous section the ECC508A will act as a cryptographic coprocessor
and HW key storage device. During the provisioning phase of the ECC508A, it will create
its Elliptic Curve Private Key and lock the slot where it is stored. Once the ECC508A device
is configured and locked the secret keys that were stored in the device will never leave it.

All the cryptographic operations where this private key is needed will happen within the
device itself.

By following this approach, the level of security that TLS offers increases since the private
keys will never be exposed in software.

During the TLS handshake and session establishment process the ECC508A will
e Perform the ECDSA verification of the Certificates being exchanged.

e |t will use ECDH to generate a shared key that can be used to established a secure
session between the Server and the Client

Atmel

Hardening TLS with ECC508

[N) ™ WireSharkLog_Training.pcapng

4 m ® RE Q&=

EF 8- E aqaarm
11 tcp.port == 8883 or tcp.port == 55626 or ip.src == 192.168.2.4 AL -] Expression.. +
No. Time Source Destination Protocol Length Info
23 1.711252 192.168.2.4 54.200.238.99 TP 54 57326 - 8883 [ACK] Seq=1 Ack=1 Win=4338 Len=0
24 1.960907 192.168.2.4 54.200.238.99 TLSV1.2 114 Client Hello

25 _2.070139 54.200.238.99 192.168.2.4 TCP. 54 8883 - 57326 [ACK] Seq=1 Ack=61 Win=17922 Len=0
» Frame 24: 114 bytes on wire (912 bits), 114 bytes captured (912 bits) on interface @
» Ethernet II, Src: NewportM_f4:16:b6 (f8:@:05:f4:16:b6), Dst: f6:5c:89:bc:b3:64 (f6:5c:89:bc:b3:64)
» Internet Protocol Version 4, Src: 192.168.2.4, Dst: 54.200.238.99
» Transmission Control Protocol, Src Port: 57326 (57326), Dst Port: 8883 (8883), Seq: 1, Ack: 1, Len: 60
v Secure Sockets Layer
v TLSv1.2 Record Layer: Handshake Protocol: Client Hello

Content Type: Handshake (22)

Version: TLS 1.2 (0x0303)

Length: 55

v Handshake Protocol: Client Hello
Handshake Type: Client Hello (1)

Length: 51
Version: TLS 1.2 (0x0303)
v Random

GMT Unix Time: Aug 18, 2026 07:33:41.000000000 MDT
Random Bytes: 2fel6f@b87127aace7259e7c4a43c06218e4876084413284. ..

Session ID Length: @

Cipher Suites Length: 2
v Cipher Suites (1 suite)

Cipher Suite: TLS_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256 (@xc02b)
Compression Methods Length: 1
v Compression Methods (1 method)

Compression Method: null (@)
Extensions Length: 8
v Extension: signature_algorithms

Type: signature_algorithms (@x@00d)

Length: 4

Signature Hash Algorithms Length: 2

v Signature Hash Algorithms (1 algorithm)

v Signature Hash Algorithm: 0x0403
Signature Hash Algorithm Hash: SHA256 (4)
Signature Hash Algorithm Signature: ECDSA (3)

() 7 Cipher suite (sslhandshake.ciphersuite), 2 bytes Packets: 92 - Displayed: 92 (100.0%) Profile: Default

Cipher Suite supported by Client

Figure 6-1. Using ECC508A ECDSA and ECDH to establish a TLS session.

For a detailed process on how the TLS handshake and session establishment works,
please refer to section 4 of this document.

7 Connecting to AWS loT using ATECC508A

Now that we understand how the ATECC508A can be used to harden the TLS session
establishment during the handshake and secure public key exchange, we will use it to
connect the device to AWS loT securely. The steps that we will follow basically are:

e Creating the Root CA that will sign our production Signer using our Root Module.

e Register our Signer Certificate with AWS Server by using the Bring Your Own
Certificate (BYOC) capability of AWS loT.

e Establish a secure TLS session using ECC508A to register our |oT device by using
the Just In Time Registration capability (JITR) of AWS loT.

e Securely exchange MQTT messages between our loT device and AWS loT once the
TLS session has been created.

We have created a GitHub repository containing the necessary information on how to run
this hands-on. It has also links to AWS documentation that will support this application note
if more detailed information is needed

MicrochipTech Secure Insight on Things GitHub repository
https://github.com/MicrochipTech/AWS-Secure-Insight

Atmel 21

Hardening TLS with ECC508

7.1 Creating the Root of Trust and Production Signer
From section 5, we know that:

e The purpose of a Root of CA is to give authority to the Production Signer to sign the
loT device.

o The Root CA is basically signing the Production Signer’s certificate using its
Private Key.

o It will allow the user to stablish another layer of security to its network by
securing the application layer and be able to verify the PKI chain back to it.

In our AWS Zero Touch Provisioning kit you will find a Root Module that we have provided
for the purpose of creating a Root CA.

Figure 7-1. Root Module. Contains an ATECC508 configured to be used as a Root CA

e The purpose of the Production Signer is to validate the identity of the loT device.

o The Identity of the loT device will be given when the Production Signer signs
the End Node’s certificate using its Private Key

In our AWS Zero Touch Provisioning kit you will find a Signer Module that we have
provided for the purpose of creating the Production Signer.

Figure 7-2. Signer Module. Contains an ATECC508 configured to be a Signer CA

The creation of the Root CA and the Production Signer and will be done by the GUI in
interaction with the Root and Signer Modules. It is the first step that the GUI takes during
the process of registering the Production Signer into AWS |loT. Let’s review this process in
the next section.

Atmel

Hardening TLS with ECC508

7.2

Atmel

Registering our Production Signer with AWS loT

As we have mentioned in the previous sections, our objective is to have IoT devices (end
nodes), that will have an identity that AWS loT can trust. The way we achieve this is by
registering our Production Signer CA certificate with AWS IoT along with a verification
certificate which will provide the means to verify that you have access to both the
Production Signer CA and the private Key associated to it.

To prove you have ownership of the Signer CA private key we generate a verification
certificate using the Signer CA certificate, the verification code used to generate a
verification certificate and sign it with the Signer CA private key.

Below is the sequence diagram that we will follow to register or Production Signer CA
certificate in AWS loT.

AWS IoT BYOC Process

AWS IoT Insight GUI

Root Module

Slgner Module

Reguest Root CA Public key

Self Sign CA

B
\

Read Root CA Public
Key from ECCS08]

Raturn Root CA Public Key

Reausst Root CA Ceroficats -

»

Build Root CA
Certificate from ECC508

U Ul

Return Root CA Certificats

A

< Request Raqistratioin Code to AWSIoT
Retum Registratioin Code to AWSIoT o
»>

Request to Build Ver fication Cartificate

B
>

Self sign the Verification Certificate
using ECCS50 :)

Request to Build Signer Certificate ;

»

Build Signar Certificate
using ECCSG% l

< Return TBS Signer Certificats Hash
Request Root CA to sign Signer Certificats TBS Hash »

Retrn Signer Cartificats signaturs

Reguast to Bulld Ver fization and Signer Certificate in PEM Fnrmar'

¢ Return Verification Certificate in PEM format
Return Sigrer Certficate n PEM format

<
-«

IEm ster Signer and Verification Cectificate
Root Module

AWS IoT Insicht GUI Signer Module -
www.websequencediagrams.com

Figure 7-3. AWS loT BYOC Registration process using the Insight GUI, Root and Signer modules

23

Hardening TLS with ECC508

7.2.2 AWS loT BYOC Hands On

The objective of this hands on will be to demonstrate the process that involves registering
your Production Signer to AWS loT by using the BYOC (Bring Your Own Certificate),
functionality.

We will be using the following setup:

e AWS loT device compose of:
o ATSAMG55
o Winc1500 (updated to FW 19.4.4)
o CryptoAuthXplained Pro

e Secure Insight of Things GUI

e Root Module

e Signer Module

a Setting-up your ATSAMG55 AWS loT device

Ouir first task is to set up our G55 AWS loT device. Take out from your AWS Zero Touch
Secure Provisioning kit the following tools:

e AWS loT Thing compose of:
o ATSAMGS55
o Winc1500 (updated to FW 19.4.4)
o CryptoAuthXplained Pro

Now assemble them as shown in the image below.
e Winc1500 will connect to EXT 1
e CryptoAuthXpro will connect to EXT 4
e OLED1 Explained Pro will connect to EXT3

Atmel

Hardening TLS with ECC508

o
Ed
<
°
]
°
>
c
=
x

LEDL

(4

r | N
if i
G izl s i

BUTTON 1 BUTION 2

ano

[Yoteo: X poameo el

Figure 7-4. ATSAMG55 AWS loT device

The AWS Zero Touch Secure Development Kit comes with a micro USB cable. Connect

one end of the USB cable to the USB Target connector in ATSAMGS55 setup, as shown in
Figure 7-5.

Figure 7-5. Connecting the USB cable to your ATSAMGS55 setup.

Atmel 25

Hardening TLS with ECC508

a Installing the AWS Secure Insight Application GUI

We will now download and install the Installing the AWS Secure Insight on Things
Application GUI from GitHub. Open the link bellow.

https://github.com/MicrochipTech/AWS-Secure-Insight/blob/master/sw/GUI/Windows-
x64/AwsSecureloT.msi

Press the download button.

1 contributor

<> Code Issues 1

MicrochipTech / AWS-Secure-Insight @uUnwatchv 6 HStar 1 YFork 2

Pull requests 0 Projects 0 Wiki Pulse Graphs Settings

Branch: master~ ~ AWS-Secure-Insight / sw / GUI / Windows-x64 | AwsSecureloT.msi

oscaratmel Updating GUI to new release

Find file = Copy path

835e9a3 29 days ago

58.4 MB Download JHistory [J I
Figure 7-6. Downloading the AWS Secure Insight on Things Application GUI
Open the Installer and run. Follow the instructions from the wizard.
ﬁ AWS Secure Insight on Things —
Welcome to the AWS Secure Insight on Things [
Setup Wizard R 19

The installer will guide pou through the steps required to install AWS Secure Insight on Things on
your computer.

WARNING: This computer program is protected by copyright law and international treaties.
Unauthorized duplication or distribution of this program, or any portion of it, may result in severe civil
of criminal penalties, and will be prosecuted to the maximum extent possible under the law.

Figure 7-7. Installing the AWS Secure Insight on Things Application GUI

Hardening TLS with ECC508

Atmel

After the installation is completed you should see an icon in your desktop like the one
bellow.

AWS Secure

Insightss

Figure 7-8. AWS Secure Insight GUI desktop shortcut

a Connecting the Root and Signer Module and ATSAMG55

The AWS Zero Touch Secure Development Kit comes with a USB dongle equipped with
an ECC508 configured as a Root Certificate Authority (Red Label) and Signer USB dongle

(Green Label).

e Connect the two USB modules to your desktop.

e Connect the ATSAMG55 AWS IloT device to your desktop

a Configuring the Secure Insight on Things GUI

Now that we have the USB Root and Signer Modules and the ATSAMGS55 AWS loT device
connected to our desktop we will run the AWS Secure Insight GUI.

The first time you run the AWS Secure Insight GUI, a configuration window will appear like
the one shown below in Figure 7-9.

Atmel 27

Hardening TLS with ECC508

2 Secure Insight on Things - a X
Microchip Insight on Things View Thing Help

Secure Insight on Things AWS Setup

CREATE NEW THING 7

Figure 7-9. Secure Insight on Things configuration setup

The information that we need to enter in the configuration window is as follows

1. The name of you AWS IoT device
2. The AWS loT Region Name we will be connecting to. Usually us-west-2

The AWS loT Access Key ID. This is provided when you create an AWS loT
account.

AWS Secret Access Key. This is provided when create an AWS loT account.
Your WiFi access point SSID

Your WiFi access point Password

After entering all the required information press the Create New Thing Button

w

N o ok

Atmel

Hardening TLS with ECC508

a Registering your Production Signer

We will now register our Production Signer using the Secure Insight on Things GUI.

Before we proceed we need to make sure that all of our devices (ATSAMG55, Root
Module, Signer Module), are being detected. If they are, you should see them enumerated
with in the GUI as shown below in Figure 7-10.

i Secure Insight on Things

Microchip Insight on Things View Thing Help

Secure Insight on Things Setup

REGISTER SIGNER

PREPARE AWS THING

RE-SCAN CONNECTIONS

AWS Root

AT88CKECCROOT

AWS Signer

AT88CKECCSIGNER

AWS Thing

ATSAMGS5 (AWS v1.0.6)

Figure 7-10. ATSAMGS55, Root Module and Signer Module enumerated correctly

If you have all of the devices connected to your desktop and still do not see all of them
showing up, go to View menu and select Reload.

Atmel 29

Hardening TLS with ECC508

In order to see the log of the Production Signer registration into AWS loT, we will use as aid
the console view with in our GUI. To enable this view, follow the next steps:

e Open the View menu.
e Select Toggle DevTools from the drop down menu.

2 Secure Insight on Things - a X
Microchip Insight on Things Thing Help

Thing Shadow

Reload

Secure Insight (

Toggle DevTools

REGISTER SIGNER

PREPARE AWS THING

RE-SCAN CONNECTIONS

AWS Root

AT88CKECCROOT

AWS Signer

AT88CKECCSIGNER

AWS Thing
ATSAMGS55 (AWS v1.0.6)

Figure 7-11. Enabling the Console view of the Secure Insight on Things GUI

2 Secure Insight on Things - [m] X
Microchip Insight on Things View Thing Help

. . Q [| Elements Network Sources Timeline | Console| » >_ | %% &, X
Secure Insight on Things Setup
© ¥ <topframe> ¥ [Preserve log

Found Hid Devices [object Object],[object Object], insight.qs:525
[object Object],[object Object],[object Object]

REGISTER SIGNER Microchip Kit Detected: \\? insight.ys:535
\hid#vid_@4d8&pid_0F31#783025a1e48080000#{4d1e55b2-F16F-11cF-88ch-
001111000030}

i : bif insight.i5:1065
PREPARE AWS THING signerSend: b:(00) insient.is
Microchip Kit Detected: \\? insight.js:535

\hid#vid_@4d8&pid_0f384#7&1dda532f&080000#{4d1e55b2-Ff16F-11cF-88cb-

001111000030}
RE-SCAN CONNECTIONS rootsend: b:#(00) insight.{s:905
signerState: KitName insight.ds:1113
AWS Root signerReply: ATB8CKECCSIGNER 00(020008) insight.ds:1114
AT88CKECCROOT
rootstate: KitName insight.js:953
rootReply: ATSBCKECCROOT 00(020008) insight.qs:054
AWS Signer
AT8BCKECCSIGNER comiame: COM6 insight.is:608
pnpld: USB\VID_G3EBRPID_2404\6832ASDFECEGA1 insight.qs:609
AWS Thing manufacturer: ATMEL, Inc. insight.is:610
ATSAMGS5 (AWS v1.0.6) comName: COM12 insight. is:608
pnpld: USB\VID_O3EBSPID_21118MI_01\6831599B4C8080001 insight.{s:609
manufacturer: Atmel Corp. insight.is:610
message written insight.is:638
thingState: KitName insight.js:777

thingReply: ATSAMGSS ©0(010006) insight.qs:778
Thing Endpoint: a3adakhi3icyve.iot.us-west- insight.ys:167
2.amazonaws . com

>

Figure 7-12. Console will show the ongoing process

From the new window pane that opened, select the Console option.

Atmel

Hardening TLS with ECC508

Before we start our Production Signer and Verification certificate registration we need to
make sure that the initialization of the GUI was successful. We will know this because we
would have received the AWS loT device EndPoint which will be used during our process.

Q [Elements Network Sources Timeline | Console | » > # B X
O V¥ <topframe> V¥ Preserve log

Found Hid Devices [object Object],[object Object],
[object Object],[object Object],[object Object]

Microchip Kit Detected: \\? insight.js:535
\hid#vid_04d8&pid_0f31#7&3025a1e48080000%{4d1e55b2-f16F-11cf-88cb-

01111000030}

signerSend: b:f(@8) insig
Microchip Kit Detected: \\? ins
\hid#vid_@4d8&pid_0f30#7&1dda532f&080000#{4d1e55b2-f16f-11cf
eelllleeee3e}

rootSend: b:f(@0)
signerState: KitName
signerReply: AT88CKECCSIGNER 00(020008)

rootState: KitName
rootReply: AT88CKECCROOT 00(020008)

comName: COM6

pnpId: USB\VID_@3EB&PID_2404\6&32ASDFECE&1
manufacturer: ATMEL, Inc.

comName: COM12

pnpId: USB\VID_@3EB&PID_2111&MI_081\6&31599B4(&0&0001
manufacturer: Atmel Corp.

message written

thingState: KitName
thingReply: ATSAMGSS ©0(@10006)

Thing Endpoint: a3adakhi3icyv9.iot.us-west-
2.amazonaws.com

Figure 7-13. Secure Insight on Things GUI successfully initialized.

The Next steps will take place during the registration process of our Production Signer in to
AWS loT. To Start the process, press the “Register Signer” Button.

The following steps will take place during the registration processes as illustrated in the
sequence diagram in Figure 7-3:

1. Secure Insight GUI will request the Root CA’s public key to Root Module.

2. Secure Insight GUI will request the Root CA’s certificate to the Root Module in PEM
format.

Secure Insight GUI will request the Verification Code from AWS loT.
Secure Insight GUI will request the Signer Module to build Verification Certificate.
Signer Module will self-sign the Verification Certificate.

Secure Insight GUI will request Signer Module to build the Production Signer
Certificate.

7. Secure Insight GUI will request Root Module to sign the Production Signer
Certificate.

8. Register Production Signer and Verification Certificates with AWS loT in PEM
format.

Atmel 31

Hardening TLS with ECC508

2

Q Elements Network Sources Timeline Profiles Resources Audits | Console | P # B X

© ¥ <topframe> ¥ [JPreservelog

rootState: PubKey insight.§s:953 =
rootReply: 1- insight.js:954

90 (DBF312BECF35DE36D2626273125918DEB1DEY@2FD3EE3EB1061EA74AB772D79CCI7D37BAGAB2CAEED7A21EESACBEF540909B687FA610C
E799@D728589AES55D06)

rootSend: aws:g(@0,089) insight.js:9@5
rootState: GetRootCert insight.js:953 [
rootReply: insight.§s:954

00(032D02D02D02D2D424547494E2043455254494649434154452020202020044049494238444343415A65674177494241674952524C6145657
76A3269593833355A30677A4469345477457743675949486F5A497A6A304541774977517A45640A4D4273474131554543677755525868686
25842735A534250636D6468626D6C365958527062323478496A416742674E5642414D4D4755563459573177624755670A5156524651304D3
14D44684249464A7662335167513045774942634E4D5459774E7A45354D6A41774D444177576867504F5468354F5445794D7A45794D7A553
SBA4ESA6C614D4563784854416242674E5642416F4D46455634)

rootSend: aws:g(@e0,01) insight.§s:9@5
rootState: GetRootCert insight.js:953
rootReply: insight.js:954

00(13595731776247556754334A6E59573570656D4630615739754D5359774A41594456515144444231460A6547467463477860494546555
2554E444E54413451534254615764755A584967516646474D7A425A40424D4742797147534D34394167454743437147534D34390A4177454
841304941424E767A457237504E643432306D4A6963784A5A474E367833704176302B342B87351596570306F486374656379583033756D714
3797537580A6F68376(72493731514A436261482B6D454D35356B4E636F574A726C5851616A5A6A426B4D42494741315564457745422F775
1494D41594241663843415141770A4467594456523050415148)

rootSend: aws:g(@0,082) insight.js:9@5
rootState: GetRootCert insight.§s:953
rootReply: insight.§s:954

00(232F4241514441674B454D423047413155644467515742425174345133484133787A6D426A5037366351444851496F477630674441660
A42674E5648534D4547444157674251743451334B4133787A6D426A5037366351444B51406F4776306744414842676771686B6A4F5851514
441674E48414442450A4169423128746(494744574A6436547473417A35783273794C65586B2F704B44356549286D41544D364B36787A674
96747387264376(453343735263524773420A48745841452B4236696E4C57494573345A4452566E6C4639724E733D0A2D2D2D02D2D454E442
943455254404649434154452D2D2D2D2D04)

Root Certificate: 2 insight.js:1801 _—
----- BEGIN CERTIFICATE-----
MIIB8DCCAZegAwIBAgIRRLaEewj21Y835Z0gzDi4TWEWCgYIKoZIzjBEAWIWQzEd
MBsGA1UECgwURXhhbXBsZSBPcmdhbml6YXRpb24xIjAgBgNVBAMMGUVAYW1wbGUg
QVRFQ2M1MDhBIFJvb3QgQ@EWIBCNMTYwNzZESM]AWMDAWWhgPOTKSOTEYMzEyMzUS
NT1aMEcxHTAbBgNVBAOMFEV4AYW1wbGUgT3InYWSpemF@ak9uMSYwIAYDVQQDDB1F
eGFtcGx1IEFURUNDNTA4QSBTakduZXIgQkFGMzBZMBMGBYqGSMA9AgEGCCQGSM49
AWEHA®IABNVZEr7PNd420mJicxIZGN6x3pAve+4+sQYep@oHctecyX83umgqCyu7X
0h71rI171QICbaH+mEMSSkNcolWIr1XQajZjBkMBIGAIUMEWEB /WQIMAYBAF8CAQAW
DgYDVR@PAQH/BAQDAgKEMBBGA1UdDgQWBBQt4Q3KA3xzmBjP76cQDKQIoGVAgDAT
BgNVHSMEGDAWgBQt4Q3KA3xzmBjP76cQDKQIoGvOgDAKBggghk jOPQQDAENHADBE
AiB1+t1IGDWId6TtsAzSx2syLeXk/pKDSeI+mATMEK6xzgIgG8rd71E3CSRCRGSB
HtXAE+B6inLWIES4ZDRVN1FOris=

----- END CERTIFICATE-----

_ 3,4,5 o
signerSend. insight.j5:1865
aws:i@66fb4d8efOccddcd2d3dc8187199388d470b7c32250bbBb93922c7efbef@74ae} DBF312BECF35DE36D2626273125918DEBIDESO2FD
3EE3EB1061EAT74A0772D79CC97D37BA6A82CAEED7A21EESACBEF540909B687FA61@CE7990D728589AE55D06)

The array is 201 bytes. Writing 64 bytes at a time insight.§s:1877
signerState: Init 6 Hash to be signed of the Production Signer Cert insight.ds:1113
signerReply: 00|441A2C929F499C126380A357DBE4B6A78FDF218526027518FC23FAE4C7203E61| insight.§s:1114
rootSend: aws:si(@3,441A2C929F499C12@38DA357DBE4B6A78FDF218526027518FC23FAE4C72D3E61) insight.js:9@5
The array is 76 bytes. Writing 64 bytes at a time insight.§s:917
rootState: SignSigner . . g . insight.js:953
7 Production Signer Certificate Signature P

rootReply: insight.§s:954
9@ (52487FDD3BA837BDFBASCD38130ECSSEEC6BIF39DD93657747BO9BDEDFEEBB9944798543FF912EB12A72F915CD23DF973EC7D5A71076C
AD9A67D2089097538B2)

signerSend: insight.js:1865

aws:ss(01,524B7FDD3BA837B8DFBASCD3813@ECSSEEC6BIF39DD93657747B09BDEDF EEBBI944798543FF912EB12A72F915CD23DF973ECTDS
A71076CADIA67D208909753882)

Figure 7-14. Registering the Production Signer and Verification Code Certificate into AWS loT part 1

Atmel

Hardening TLS with ECC508

Q [Elements Network Sources Timeline Profiles Resources Audits | Console | PIN - T =

© ¥ <topframe> ¥ [JPreservelog

signerState: GetSignerCert insight.§s:1113 =
signerReply: insight.§s:1114

00(232F4241514441674B454D42304741315564446751574242544738465752777566794D36527134694E676144624A48375670556A41660
A42674E5648534D4547444157674251743451334B4133787A6D426A5037366351444B51496F4776306744414842676771686B6A4F5851514
441674E48414442450A4169425353332F644F3667337666756C7A54675444735665374775664F6432545A586448734A7657332B364C6D514
96752486D46512F28524(72457163766B560A7A5350666C7A3748316163516473725A706E306769516C314F4C493D@A2D2D2D2D2D454E442
943455254494649434154452D02D2D02D2004)

signerSend: aws:g(02,00) insight.js:1865
signerState: GetVerifyCert insight.§s:1113
signerReply: insight.§s:1114

0@2(2320202D2D2D4245474945204345525449464943415445202020202D0A4D4949423144434341587567417749424167495255582F64677
B4F4C4ABF6A4253392F464841584779774977436759494B6F5A497A6A304541774977527A45640A4D4273474131554543677755525868686
25842735A534258636D6468626D6C3659585270623234784A6A416842674E5642414D4D4855563459573177624755670A5156524651304D3
14D44684249464E705A32356(636941774D4441774D434158445445324D4463784F54409774D4441774D466F59447A68354F546B784D6A4D7
B80A4DEA4D314F545535576A42714D5230774777594456515148)

signerSend: aws:g(@2,81) insight.§s:1865
signerState: GetVerifyCert insight.§s:1113
signerReply: insight.js:1114

00(1344425246654746746347786(494539795A3246756158706864476(76626A464A4D456347413155450A417778414E6A5A6D596A526B4
FA7566D4F574E6A5A44426A5A444A6B4D32526A4F4445774E7A45354F544D344D4751304E7A42694E324D7A4D6A49314D474A690A4D47493
S4D7ABB794D6D4D335A575A695A5759774E7AS52685A54425A4D424D4742797147534D34394167454743437147534D3439417745484130494
142494F360A57646A40705A5A6475704E6F354474304177575664396A704A704C354D4A48637245374638323538777468514D704567314€E7
@486C595A355A2F5A63762F32610A6E6766727535596C4C4C72)

signerSend: aws:g(02,02) insight.js:1865
signerState: GetVerifyCert insight.§s:1113
signerReply: insight.§s:1114

00(2328535874706A73756A497A41684D42384741315564497751594D426141464D6277565A4843352F497A704772694932426F4E7368660
A74576(534D416F4743437147534D343942414D43413063414D4551434943415258344948336D6F696330516A312B7656324A4B355774434
B5359632B736936726A6449346D4D4750664169412F5242666454794872736A75594351486944622F685668703230494(772F744163326B4
7323847574128673D3D0A2D2D0202D2D4545442043455254404649434154452020202D2004)

signerCert: insight.§s:1495
----- BEGIN CERTIFICATE-----

MIIB8DCCAZegAwIBAgIRUX/dgx0LJ0jBS9/FHAXGYWEWCEYIKoZIzjOEAWIWQzEd
MBsGAL1UECgwURXhhbXBsZSBPcmdhbml6YXRpb24xIjAgBgNVBAMMGUVA YW 1wbGUg
QVRFQ2M1IMDhBIFIvb3QgQ@EwIBCNMTYwNzESMAWMDAWWhgPOTKSOTEYMzEyMzUS

NT1aMEcxHTAbBENVBAOMFEVAYH1wbGUgT3InYWSpemF @ak9uMSYwIAYDVQQDDB1F 8 Reglsterlng the Production
eGFtcGx1IEFURUNDNTA4QSBTakduZXIgMDAWMDBZMBMGBY qGSM49AgEGCCQGSMA9 . . . -
AWEHA@IABIO6Wd] IpZZdupNoSDt9AmkVdSipIpLSMIHCrE7F8258wtkQMpEgINDH Slgner and Verification
1YZ5Z/Zcv/2angfrusYlLLr+SXtpjsujZiBkMBIGAIUJEWER /wQIMAYBAF8CAQAW o .

DgYDVR@PAQH/ BAQDAZKEMBBGA1UADZQWBBTGBFHRwWuFyMERG41 NgaDbIHTVpUFAF Certificates into AWS loT

BgNVHSMEGDAWgBQt4Q3KA3xzmBjP76cQDKQIoGvegDAKBEgqhk jOPQQDAgNHADBE
AiBSS3/d06g3vfulzTgTDsVe7Guf0d2TZXdHsIvii3+6LmQIgRHmMFQ/+RLrEqcvkV
zSPf1z7H1acQdsrZpn@giQl10LI=

AAAAA END CERTIFICATE-----

verifyCert: insight.js:1496
----- BEGIN CERTIFICATE-----
MIIB1DCCAXugAwIBAgIRUX/dgxOLJojBS9/FHAXGywIwCgYIKoZIzjBEAWIWRZEd
MBsGAL1UECgwURXhhbXBsZSBPcmdhbml6YXRpb24x1jAkBgNVBAMMHUVAYW1wbGUg
QVRFQ2MIMDhBIFNpZ251ciAwMDAWMCAXDTE2MD x0T IwMDAWMFoYDzkS50TkxMIMx
MjM10TUSK3BgMROwGWYDVQQKDBRFeGFtcGx1IE9yZ2FuaXphdGlvbjFIMECGAIUE
AwxAN3ZmY3jRkOGVmOWN] ZDBFZDIKM2RjODEWNzZ ESOTMAMGQONZBIN2MzMFIIMGI i
MGISMzkyMmM3ZWZiZWYwNzRhZTBZMBMGBYqGSM49AZEGCCqGSMA9AWEHARIABIOE
Wd3jIpZZdupNoSDt9AWWVdIjpIpLSMIHCrE7F8258wtkQMPEgINPH1YZ5Z/Zcv/2a
ngfruSY1LLr+SXtpjsujIzAhMB8GA1UdIwQYMBaAFMbwWVZHCS/IzpGriI2BoNskf
tW1SMAOGCCqGSM49BAMCARCAMEQCICARX4IH3moic@Qj1+vV2IKSWECKSYc+sibr
dI4mMGPfALA/RBfdTyKrsjuYCQHiDb/hVhp2@ILw/tAc2kG28GHA+g==

----- END CERTIFICATE-----

FYTEY . . insight.js:1865

Signing Module Registration Successful! I Production Slgner insight.4s:1517
: / - H insight.qs:

signerState: PubKey Reglstrathn Successful insight.js5:1113

signerReply: insight.js:1114
90 (83BAS9DBCBAS5965DBA9368E43B7D@3059577D8E92692F93091DCAC4ECSF36E7CC2D910329128D4DA4795867967F65CBFFDIAIER7EBBBY
6252CBAFE497B698ECB)

Figure 7-15. Registering the Production Signer and Verification Code Certificate into AWS loT part 2

Atmel 33

Hardening TLS with ECC508

During the registration process with AWS loT the GUI will also enable auto registration
(JITR), functionality for our production signer CA certificate as shown below in the Figure 7-
15.

/ Send the signer & verification cert to AWS

var params =

{
caCertificate: signerCert, /* required */
verificationCertificate: verifyCert, /* reguired */

setAsActive: true,
allowAutoRegistration: true

1.
b
awsIot.registerCACertificate(params, function(err, data)
{
if (err)
:
/ an error occurred

console.log("Failed to register Signing Module\n", err, err.stack);

}
successful response
//console.log(data);
console.log("Signing Module Registration Successful!\n");
}

});

Figure 7-16. Activating the Production Signer CA certificate and enabling auto-registration for JITR on the GUI

After we have successfully registered our Production Signer Certificate into AWS loT we
can go and access our account and verified the registration.

- Al . ' "
T A WS |0T Resources | MQTTClient | Tutorial | Settings | O notifications
(AY) 0/0things 0/0 thing types 1/1 rules 7/7 CAs Detail
4/4 certificates 1/1 policies First Previous Next Last Learn more Detail
CA certificate ARN arn:aws:iot:us-west-2:29918333782
)) — 6:cacert/Bf800505769d140c314755¢
thingPolicy thingJitActivation

15da44de00cdb34605e6f5¢114ba59
1e3f3ab7eed

ENABLED Status ACTIVE

Auto-registration Enabled

o &L o & o & 0O {59} 0 Issuer CN=Example ATECC508A Root CA,
0O=Example Organization

Subject CN=Example ATECC508A Signer 00
00,0=Example Organization

Created date Sep 20, 2016 3:53:41 PM -0600

Effective date Jul 19, 2016 2:00:00 PM -0600

PENDING_ACTIVA v
TION Expiration date Dec 31, 9999 4:59:59 PM -0700

af032bf
'cd068

4d2f

Production Signer
Registration in AWS
loT

&
(]

4
o

Figure 7-17. Production Signer Registration in AWS loT

Atmel

Hardening TLS with ECC508

7.3 Just-In-Time Registration of the AWS loT device

In the previous section we showed how use-your-own-certificate (BYOC), of AWS IoT will
allow to use device certificates signed by a production signer, to connect and authenticate
with AWS loT.

In this section we will now use the Just-In-Time Registration support from AWS loT. With
JITR we will eliminate the need to manually registered any device that was signed by the
Production Signer and turn this into an automated process.

To enable an AWS loT device for JITR, the following steps need to take place

e Create, register and activate a CA certificate that will be used to sign your device
certificate (like we did in the previous section).

e Enable auto-registration of certificates (like we did in the previous section).
e Create device certificates signed by your CA and install them on your device

e Create and attach a rule with an AWS Lambda action that activates the certificate
and then creates ad attaches policies to the certificate.

e Connect to AWS loT using the device certificate

7.3.1 AWS loT TLS and JITR Hands- On

The objective of this hands on will be to demonstrate the process that involves the JITR
functionality of AWS loT.

A For this portion you must have had completed the previous section successfully

We will be using the following setup:

e AWS loT device compose of:
o ATSAMG55
o Winc1500 (updated to FW 19.4.4)
o CryptoAuthXplained Pro

e Secure Insight of Things GUI

e Root Module

e Signer Module

Atmel 35

Hardening TLS with ECC508

51999919997

‘_‘,1

L
®
[d
[d
®
®
®
L 4
L
L
Z

LEDL LED2

B B:

. W

BUTTON 1 BUTION 2

aND

[Youeo: X piameo)

Figure 7-18. ATSAMGS55 AWS loT device

The AWS Zero Touch Secure Development Kit comes with a micro USB cable. Connect
one end of the USB cable to the USB Target connector in ATSAMGS55 setup, as shown in
Figure 7-19.

Figure 7-19. Connecting the USB cable to your ATSAMGS55 setup.

Atmel

Hardening TLS with ECC508

Below is the sequence diagram that we will follow for AWS loT JITR. Here we assume that
the process for registering your Production Signer CA certificate and activating the JITR
functionality has been completed.

AWS IoT JITR Process

AWS loT ATSAMGSS m Signer Module

Run Prepare AWS Thing Button :
< Inttialize device (personalization
8uild device certificate using ECCS08 :

Return device certificate TBS Hash »
Request Signature of TBS Hash -
>

Sign device TBS Hash using ECCS0E private ey :

g Return device certificats signature

< Save device certificate

'Se'\d Access Point SSID and Pasword
Store Access Pont SSID/Password in ECCS08 :

'Esmbl'm TLS session using ‘.\'3IF§L‘ECC5IJS.
Publish a registration message — Registration of

Disconnect the client :) deVice Cenificate
into AWS loT

ATSAMGS5 Insight GUI Signer Module

www websequencediagrams.com

Connecting Client to AWS ToT :)
IoT

AWS

Figure 7-20. AWS loT device JITR process

When a device attempts to connect with it's a certificate that it is not known to AWS loT but
was signed by a Signer CA certificate that was registered with AWS IoT, the device
certificate will be auto-registered by AWS loT in a new PENDING-ACTIVATION state. This
means that the device is certificate was auto-registered but is not active. This is only
controlled by AWS loT.

The change of status of from PENDING-ACTIVATION to ACTIVE can be done by means of
an AWS Lambda action on the registration topic that will activate the certificate, create and
attach a policy to it.

For more information about creating a Lambda function and creating and attaching a policy,
visit the AWS loT site bellow.

https://aws.amazon.com/blogs/iot/just-in-time-registration-of-device-certificates-on-aws-iot/

For this hands-on below you can find the Lambda function we are using along with the
policy that we are creating and device activation in the Appendix section of this document.

Atmel 37

Hardening TLS with ECC508

a Registering the AWS loT Device Certificate Using the GUI

Connect your Root Module, Signer Module and AWS |loT device to your desktop, then open
the Secure Insight on Things GUI.

Before we proceed we need to make sure that all of our devices (ATSAMG55, Root
Module, Signer Module), are being detected. If they are, you should see them enumerated
with in the GUI as shown below in Figure 7-21.

i Secure Insight on Things

Microchip Insight on Things View Thing Help

Secure Insight on Things Setup

REGISTER SIGNER

PREPARE AWS THING

RE-SCAN CONNECTIONS

2

A LA P
AWS

AT88CKECCROOT

AWS Signer

AT88CKECCSIGNER

AWS Thing

ATSAMGS5 (AWS v1.0.6)

Figure 7-21. Secure Insight on Thing Gui

Atmel

Hardening TLS with ECC508

If you have all of the devices connected to your desktop and still do not see all of them
showing up, go to View menu and select Reload.

In order to see the log of the Production Signer registration into AWS loT, we will use as aid
the console view with in our GUI. To enable this view, follow the next steps:

e Open the View menu.
e Select Toggle DevTools from the drop down menu.

& Secure Insight on Things - m] X
Microchip Insight on Things E Thing Help
Thing Shadow
Reload

Secure Insight (

Toggle DevTools

REGISTER SIGNER

PREPARE AWS THING

RE-SCAN CONNECTIONS

AWS Root

AT88CKECCROOT

AWS Signer

AT88CKECCSIGNER

AWS Thing

ATSAMGS55 (AWS v1.0.6)

Figure 7-22. Enabling the Console view of the Secure Insight on Things GUI

Press the “Prepare AWS Thing” button. This will initiate the Device Registration which we
previously discussed in the following order.

Secure Insight GUI will request the loT Device to build its certificate.

Secure Insight GUI will request the Signer Module to sign the TBS Hash.

loT Device will save the Device Signature and Device Certificate.

Secure Insight GUI will send the access point SSID and Password to loT Device
loT Device will save the access point SSID and Password in ECC508.

loT Device will stablish a TLS connection with AWS loT using ECC508 to harden TLS
session

AWS loT will publish a registration message and set loT Device in pending activation
AWS loT will disconnect Client (loT Device)

2R S o

© N

Atmel 39

Hardening TLS with ECC508

9. loT Device will stablish a TLS connection with AWS loT using ECC508 to harden TLS
session

10.JITR has been successful and loT Device is connected to AWS loT

5 View Thing Help
Q [] | Elements Network Sources Timeline Profiles Resources Audits | Console | PIN - T =

© ¥ <topframe> ¥ [Preserve log

Found Hid Devices [object Object],[object Object],[object Object],[object Object] insight.§s:525 -
Microchip Kit Detected: \\?\hid#vid_@4d8&pid_0f31#7&74488828080000#{4d1e55b2-f16f-11cf-88cb- insight.§s:535
901111000030}

Microchip Kit Detected: \\?\hid#vid_@4d8&pid_0f30#7&309403d4&080000%{4d1e55b2-F16Ff-11cf- insight.§s:535
88cb-001111000030}

signerSend: aws:p(@3) insight.§s:1865
comName: COM6 insight.js:608
pnpId: USB\VID_O3EB&PID_2404\6&32A5DFEC&Q&1 insight.js:6@9
manufacturer: ATMEL, Inc. insight.js:618@
signerState: PubKey 1 insight.q§s:1113
signerReply: insight.qys:1114

00(30CF483CCT751C413A61A43B4AD2BBAAT44CTA394(BD55E7BD53C17B02C2F843300E91433B77C8E4EQES4F3AT7609132F44AA59C4
4CA97E6AB829F5E3331FB27A)

signerSend: aws:g(@1,08) . insight.§s:1865
signerState: GetSignerCert insight.q§s:1113
signerReply: insight.qs:1114

00(032D2D2D2D2D424547494E20434552544946494341544520202D020200A4D49494238544343415A65674177494241674952574868
7259506D384A593944536F6F544F3756676541457743675949486FSA40TABA304541774977517A45640A4D427347413155454367775
552586868625842735A534250636D6468626D6C365958527062323478496A416742674E5642414D4D4755563459573177624755670A
5156524651304D314D44684240464A7662335167513045774942634E4D5459774E7A45354D6A41774D444177576867504F546B8354F5
445794D7A45794D7A55350A4E546C614D4563784854416242674E5642416F4D46455634)

signerSend: aws:g(@1,01) insight.§s:1865 L
signerState: GetSignerCert insight.§s:1113
signerReply: insight.js:1114

090(13595731776247556754334A6E59573570656D4630615739754D5359774A41594456515144444231460A65474674634778604945
465552554E444E54413451534254615764755A5849674D4441774D44425/4D424D4742797147534D34394167454743437147534D343
O0A41774548413049414244445053497A485563515470687044744830726971644578364F557939566565395538463741734C34517A
414F6B554D3764386A68344F0AGC504F6ER46768544C3053715763524D7158357143436E31347A4D66736E716A5A0A426B4D4249474
1315564457745422F7751494D41594241663843415141770A4467594456523050415148)

signerSend: aws:g(01,02) insight.qjs:1865
signerState: GetSignerCert insight.§s:1113
signerReply: insight.qjs:1114

00(232F4241514441674B454D423047413155644467515742425434636(566F 34627673474D384F6E4AS46534304E713639642B6A6A
41660A42674E5648534D45474441576742514F724E6E6452706673387544514C415A3058614235385A49377A4441484267677168686
A4F50@51514441674E49414442460A4169417979443456514F5151764F6A6D7933366C654B3772356B396F617A646676495342753835
584548706D4C774968414532624(64503944562F33457361500A337A6A63686F6D372F6157736F7853716761685142433073375A714
90A2D2D2D2D2D454E442043455254494649434154452D202D2D2004)

thingSend: insight.§s:738
aws:i(38CF488CC751C413A61A43B4AD2BBAA744(7A394CBDS5E7BDS3C17B02C2F843300E91433877C8E4ERE94F3A776@9132F44AA5
9C44CA97EGARB29FSE3331FB27A)

thingState: Init 2 insight.§s:777
thingReply: 8@(BE375253DA226F4666D64AB7DCB54D9ACADA3DFA4CD@138279042F5D9D4BELEL) insight.§s:778
signerSend: aws:si(@3,BE375253DA226F4666D64AB7DCB54D9ACADA3DFA4CDO13B279042F5DID48ELE]L) insight.§s:1865
The array is 76 bytes. Writing 64 bytes at a time insight.qjs:10877
signerState: SignThing insight.q§s:1113

Figure 7-23. JITR process using GUI part 1

Atmel

Hardening TLS with ECC508

Q D Elements Network Sources Timeline Profiles Resources Audits | Console | > # D, X

© ¥ <topframe> ¥ [JPreservelog

signerReply: insight.qs:1114 P
90 (@PDD7EBAG2903827441A029DBCA1CR3BAAFB330826B5D76CE82FIEDAD332FECT89FEQC3AATF7F14735C2CCD8776886BFC3EE2DCCF
E400B79DECOD5472398D47C1)

thingSend: insight.§s:738
aws:ss(03,0DD7EBAG2903827441A029DBCA1CO3BAAFB33082685076CEB2FIEDBD332FEC789FEQC3AATF7F14735C2CCD8776806BFC3
EE2DCCFE4@9B79DECBD5472398D47C1)

thingState: SaveSig insight.q§s:777
thingReply: 8@() insight.§s:778
thingSend: insight.js:738
aws:sh(61336164616b68693369637976392e696F742e75732d776573742d322e616d617a6¥6e6177732e636F6d,4F73636172496F5
4)

thingState: SaveHostInfo insight.j§s:777
thingReply: 80() insight.§s:778
thingSend: aws:g(03,00) insight.§s:738
thingState: GetThingCert insight.j§s:777
thingReply: insight.§s:778

00 (202D2D2D2D424547494E 20434552544946494 3415445202020 2D2D0A4DA049427 254434341564F 674177494 2416749526248494D
S06A53544866506F634F43486D30484A4B67407743675940486F SA407ABA304541774977527A45640A4D42734741315545436777555
2586868625842735A53425063606468626D6C3659585270623234784A6A416842674E5642414D4D4855563459573177624755670A51
56524651304D314D44684240464E705A32356C636941774D4441774D434158445445324D4463784F 5449774D4441774D466F 59447A6
B354F5468784D6A4D780A4DGA4D314F545535576A42434D523077477759445651514B44425246654746746347786C494539795A3246
756158706864476076626A45684D42384741315545044177775952586868625842735A53424256455644517A55774F4545675247563
261574E6CAD466E7745775948486F5A407ABA30434]15159404B6F 5A407AGA3N440A415163445167414530345868404568337A4E3064
4F2BAD56304E43383349736F4A6F6F573568414C6936674641576D6165624D33584A28315772454A65666E680A43636F45503949696
452344A2FAC6A795679617548636948334F4F6944614D6A4D434577487759445652306A42426777466F415528484A56614F 47373742
BA5RAL47079553375505461757658666F 3477436750404B6F SA407ABA3B454177404453414177525149674464667270696844676E5
2426F436E62796877447571287A0A4DA04AT 25858624F 677 66E7444544D76374867434951436636634F7166333855633177737A5964
326747763850754C637A28514174353373445652794F5931480A775130300A202020202D454E4420434552544946494341544520202
D2D2DBA)

----- BEGIN CERTIFICATE----- insight.js:844
MIIBrTCCAVOgAWIBAgIRbHIMPSTKFYocOCHMOHIKgIwCgYIKoZIzjREAwIWRZEd
MBsSGALUECgwURXhhbXBsZSBPcmdhbm16YXRpb24x]jAkBgNVBAMMHUVAYW1wbGUE
QVRFQAM1MDhBIFNpZ251ciAwMDAWMCAXDTE2MDcxOT IwMDAWMFoYDzk50TkxMIMx
MjM10TUSWIBCMROWGWYDVQQKDBRFeGFtcGx1IE9yZ2FuaXphdGlvbjEhMBBGAIUE
AwwYRXhhbXBsZSBBVEVDQzUWOEEgRGV2akN1MF kwEwYHKoZIzjOCAQYIKoZIzjOD
AQcDQgAE@4XNhIEK3zZN@dO+MVBNC83IsolooWShALi6gFAKMaebM3XJ+1WrEJefnk
CcoEP9IidR4J1/LjyVyauHciH300iDaMjMCEwHWYDVROjBBgwFoAU+HIVa0G7783P
DpyU3uPTauvXfodwCgYIKoZIzjREAWIDSAAWRQIgDdfrpikDgnRBoCnbyhwDug+z
MIJrXXbOgvntDTMv7HgCIQCF6c0gf38UclwszYd2gGv8Pulcz+QAt53sDVRyOY1H
w)==

thingSend: aws:sc(@l,----- BEGIN CERTIFICATE----- insight.§s:738
MIIB8TCCAZegAwIBAgIRWHKrYPmM8JY9DS00TO7VgeAEWCgYIKoZIzjOEAWIWQzZEd
MBsGALUECgwURXhhbXBsZSBPcmdhbml6YXRpb24xIjAgBgNVBAMMGUVAYW1wbGUg
QVRFQAM1IMDhBIFIvb3QgQ@EWIBCNMTYwNZESMIAWMDAWWhgPOTKSOTEYMzEyMzUS
NT1aMEcxHTAbBgNVBAOMFEVAYW1wbGUgT3InYWSpemF@aWduMSYwIAYDVQQDDB1F
eGFtcGx1IEFURUNDNTA4QSBTaWduZXIgMDAWMDBZMBMGBYqGSM49AgEGCCQGSMA9
AWEHA@IABDDPSIzHUcQTphpDtK@riqdEx60Uy9VeeUBF 7AsL4QzAOkUM7d8 k40
1POndgkTL@SqWCcRMgX5qCCn14zMfsngjZiBkMBIGALUJEWEB /WwQIMAYBAFBCAQAW
DgYDVR@PAQH/BAQDAgKEMBBGA1UdDZQWBBT4c1VodbysGMBONnI Te49Ng69d+] JAF L]
BgNVHSMEGDAWgBQOrNndRpfs8uDQLAZ@XaB58Z17zDAKBggqhk jOPQQDANIADBF
AiAyyD4VQOQQvOjmy361eK7rSk9o0azdfvISBu8SXEHpmLWIhAK2bLAPODV/3EsaP

3zjckom7/aksoxSqgahQBCBs7Zql

----- END CERTIFICATE-----

Figure 7-24. JITR process using GUI part 2

Once the device has been registered in to AWS loT, we can go into our AWS loT account
and verify it, like the Figure below.

Atmel 41

Hardening TLS with ECC508

Resources | MQTT Client | Tutorial

Select all
0/0 things ~ 0/0 thing types ~ 1/1rules 7/7 CAs
4/4 certificates 1/1 policies e
thingPolicy yJitActivat
on
ENABLED ACTIVE
0 & O # O ® 0

29bd683d615f

da336:
d2f4e42878

PENDING_ACT

IVATION

3
02734,
PENDING_ACT
IVATION
& —

Device Certificate

139 [4bda302fcaf03]
ddd7232e8049
7b5da666d0
ACTIVE ACTIVE
& o & o w0

Figure 7-25.

JITR successfully completed

Hardening TLS with ECC508

Certificate ARN

previous [mext Last

Status

Issuer
Subject
CA

Created date

Effective date

Expiration date

Settings | 0 notifications

6:cert/Abda302fcaf032bf10faf7fa437
cd0684d2f8901d89a1d79ebcabe425
3430313

ACTIVE

CN=Example ATECC508A Signer
0000,0=Example Organization

CN=Example ATECC508A
Device,O=Example Organization

Sep 20, 2016 10:06:42 AM -0600
Jul 19, 2016 2:00:00 PM -0600

Dec 31, 9999 4:59:59 PM -0700

thingPolicy

JITR Successfuly
completed (@]

Atmel

8 Appendix

8.1 Lambda Function, Policy Attachment and Device Activation

/**
This node.js Lambda function code creates and attaches an IoT policy to the certificate
registered. It also activates the certificate. The Lambda function is attached as the rules engine action to

the registration topic aws/events/certificates/registered/<caCertificate|D>

event JSON Structure:

{
"certificateld": "<certificatelD>",
"caCertificateld": "<caCertificateld>",
"timestamp": <timestamp>,
"certificateStatus": "PENDING_ACTIVATION",
"awsAccountld": "<awsAccountld>",
"certificateRegistrationTimestamp": "<certificateRegistrationTimestamp>"

}

-

var AWS = require(‘aws-sdk');

var region;

var iot;

var accountld;

var certificateARN;

var certificateld;

var thingPolicy;

const awsPolicyName = 'thingPolicy";

/I Delay time tracking
var eventTime;
exports.handler = function(event, context, callback)
{
/I Step 1: Create the policy.
/I Step 2: Attach the policy to the certificate
/I Step 3: Activate the certificate.
//Optionally, you can have your custom Certificate Revocation List (CRL) check logic here and
IIACTIVATE the certificate only if it is not in the CRL .Revoke the certificate if it is in the CRL
/I Capture the event time & delay for Lambda execution
var currentTime = (new Date()).getTime();
eventTime = event.timestamp;

var eventDelay = currentTime - eventTime;

console.log("Lambda event delay: " + eventDelay);

Atmel 43

Hardening TLS with ECC508

/I Replace it with the AWS region the lambda will be running in region = "us-west-2";

/I Get the AWS account ID
accountld = event.awsAccountld.toString().trim();

/I Create the lot object
iot = new AWS.lot({'region': region, apiVersion: '2015-05-28'});
certificateld = event.certificateld.toString().trim();

/I Construct the ARN for the Thing certificate
certificateARN = "arn:aws:iot:${region}:${accountld}:cert/${certificateld};

/I Create and attach the thingPolicy

awsCreateSimplePolicy();

5

function awsCreateSimplePolicy()
{
/I Step 1: Create the policy
/I Policy definition
var policy = {
"Version": "2012-10-17",
"Statement": [{
"Effect": "Allow",
"Action":["iot:*"],
"Resource": ["*"]

1

/I Create the policy

iot.createPolicy(

{
policyDocument: JSON.stringify(policy),
policyName: awsPolicyName

}. (err, data) =>

{
/I Log the delay for the createPolicy() callback
var currentTime = (new Date()).getTime();
var callbackDelay = currentTime - eventTime;

console.log("awsCreatePolicy() Delay: " + callbackDelay);

Atmel

Hardening TLS with ECC508

Atmel

/I Ilgnore if the policy already exists
if (err && (lerr.code || err.code !== 'ResourceAlreadyExistsException'))
{
console.log(err);
return;
}
/I Set the thingPolicy to the return data
thingPolicy = data;

/I Step 2: Attach the policy to the certificate
awsAttachPolicy();

8

function awsAttachPolicy()
{
/I Step 2: Attach the policy to the certificate
/I Attach policy to certificate
iot.attachPrincipalPolicy(
{
policyName: awsPolicyName,
principal: certificateARN
}, (err, data) =>
{
/I Log the delay for the attachPrincipalPolicy() callback
var currentTime = (new Date()).getTime();
var callbackDelay = currentTime - eventTime;

console.log("awsAttachPolicy() Delay: " + callbackDelay);

/' lgnore if the policy is already attached

if (err && (lerr.code || err.code !=='ResourceAlreadyExistsException'))
{

console.log("Failed to attach Policy to \"Thing\" certificate\n" + err);
return;

}

/I We've attached the policy, now activate the certificate

awsActivateThing();
o}

Hardening TLS with ECC508

45

function awsActivateThing()
{
/IStep 3: Activate the certificate.
I Optionally, you can have your custom Certificate Revocation List (CRL) check logic here and
I ACTIVATE the certificate only if it is not in the CRL .Revoke the certificate if it is in the CRL
iot.updateCertificate(
{
certificateld: certificateld,
newStatus: 'ACTIVE'
}, (err, data) =>
{
/I Log the delay for the updateCertificate() (activate) callback
var currentTime = (new Date()).getTime();
var callbackDelay = currentTime - eventTime;

console.log("awsActivate Thing() Delay: " + callbackDelay);

if (err)
{

console.log("Thing activation failed.");

}

else

{

console.log("Thing activated successfully.");

Atmel

Hardening TLS with ECC508

9 License Information

CONNECTED

@MICRDCHIP Atmel | Enabling Unlimited Possibilities [d bd L1 Bd CJ &4

Atmel Corporation 1600 Technology Drive, San Jose, CA 95110 USA T: (+1)(408) 441.0311 F: (+1)(408) 436.4200 | www.atmel.com
© 2014 Atmel Corporation. / Rev.: Error! Reference source not found. — Error! Reference source not found.: Error! Reference source not found..

Atmel®, Atmel logo and combinations thereof, Enabling Unlimited Possibilities®, and others are registered trademarks or trademarks of Atmel Corporation in U.S. and
other countries. ARM®, ARM Connected® logo, and others are the registered trademarks or trademarks of ARM Ltd. Other terms and product names may be trademarks
of others.

DISCLAIMER: The information in this document is provided in connection with Atmel products. No license, express or implied, by estoppel or otherwise, to any intellectual property right is
granted by this document or in connection with the sale of Atmel products. EXCEPT AS SET FORTH IN THE ATMEL TERMS AND CONDITIONS OF SALES LOCATED ON THE ATMEL
WEBSITE, ATMEL ASSUMES NO LIABILITY WHATSOEVER AND DISCLAIMS ANY EXPRESS, IMPLIED OR STATUTORY WARRANTY RELATING TO ITS PRODUCTS INCLUDING,
BUT NOT LIMITED TO, THE IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT. IN NO EVENT SHALL ATMEL BE
LIABLE FOR ANY DIRECT, INDIRECT, CONSEQUENTIAL, PUNITIVE, SPECIAL OR INCIDENTAL DAMAGES (INCLUDING, WITHOUT LIMITATION, DAMAGES FOR LOSS AND
PROFITS, BUSINESS INTERRUPTION, OR LOSS OF INFORMATION) ARISING OUT OF THE USE OR INABILITY TO USE THIS DOCUMENT, EVEN IF ATMEL HAS BEEN ADVISED
OF THE POSSIBILITY OF SUCH DAMAGES. Atmel makes no representations or warranties with respect to the accuracy or completeness of the contents of this document and reserves
the right to make changes to specifications and products descriptions at any time without notice. Atmel does not make any commitment to update the information contained herein. Unless
specifically provided otherwise, Atmel products are not suitable for, and shall not be used in, automotive applications. Atmel products are not intended, authorized, or warranted for use as
components in applications intended to support or sustain life.

SAFETY-CRITICAL, MILITARY, AND AUTOMOTIVE APPLICATIONS DISCLAIMER: Atmel products are not designed for and will not be used in connection with any applications where the
failure of such products would reasonably be expected to result in significant personal injury or death (“Safety-Critical Applications”) without an Atmel officer's specific written consent.
Safety-Critical Applications include, without limitation, life support devices and systems, equipment or systems for the operation of nuclear facilities and weapons systems. Atmel products
are not designed nor intended for use in military or aerospace applications or environments unless specifically designated by Atmel as military-grade. Atmel products are not designed nor
intended for use in automotive applications unless specifically designated by Atmel as automotive-grade.

