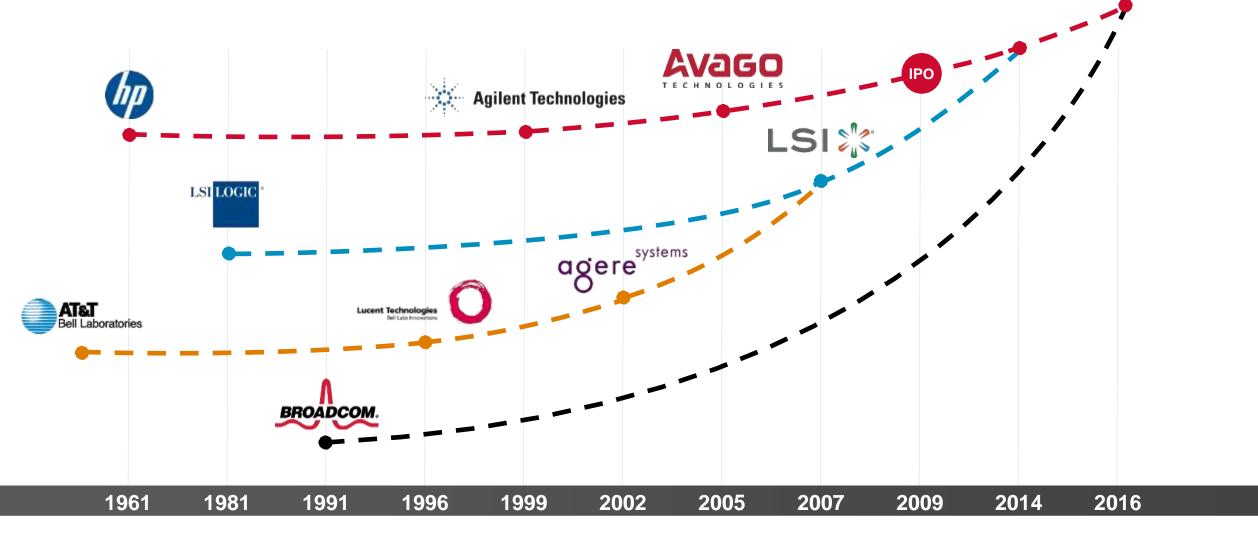
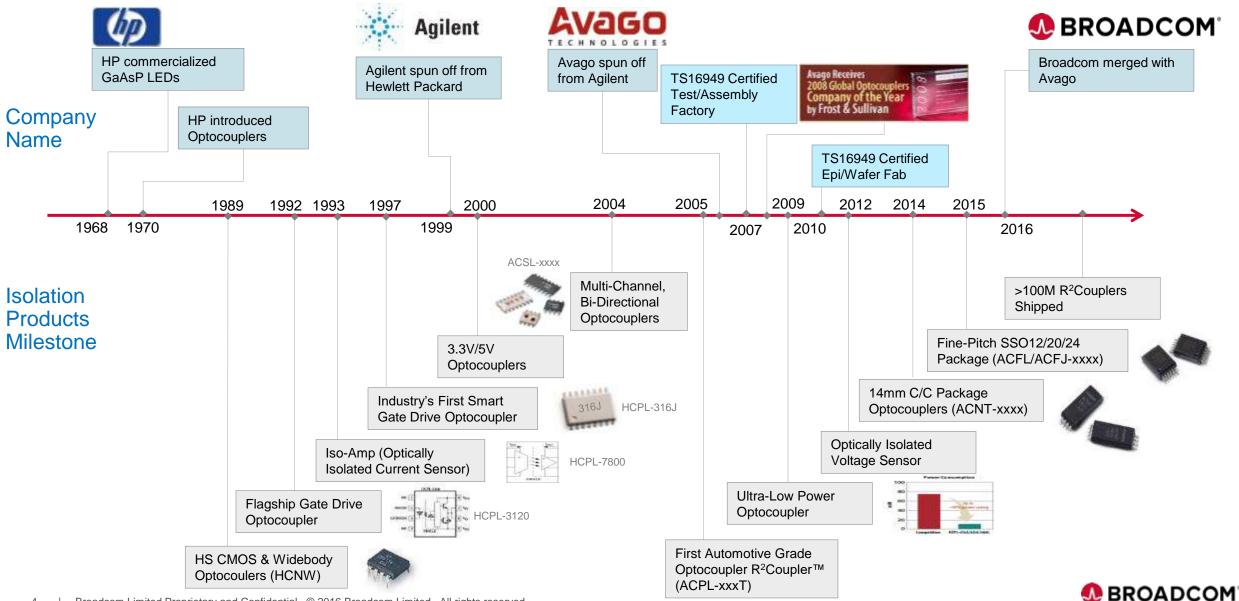
功能全面的光耦驱动并保护下一代功率器件 Broadcom Optocouplers – Driving and Protecting Next-generation Power Devices For Automotive Designs

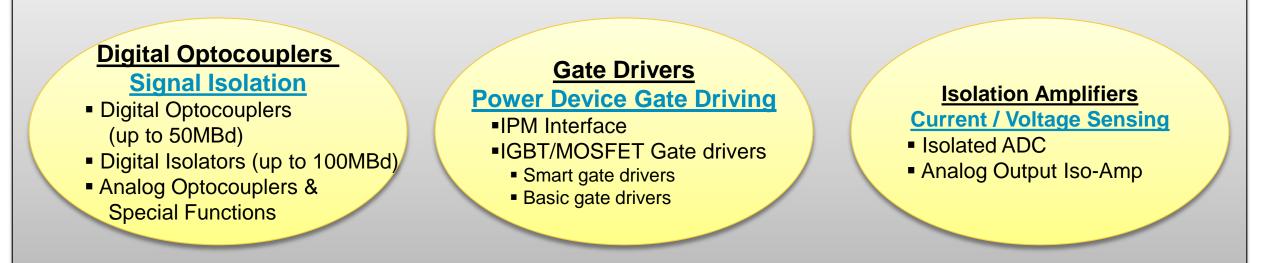
Hong Lei Chen November 23, 2017 • Tech Shanghai



Agenda

- Broadcom Optocouplers Overview
- Optocoupler Introduction
- Automotive-grade Optocouplers and Applications
- EV Charging Station Introduction and New Gate Driver Introduction
- Design Tools and Technical Support
- Summary


Heritage of Technology


Broadcom Optocouplers – Market and Product Leadership

4 | Broadcom Limited Proprietary and Confidential. © 2016 Broadcom Limited. All rights reserved.

Broadcom Optocouplers Overview

Product Families

Market Segments	
Industrial	Automotive-grade Optocouplers AEC-Q100 certificationHermetic Optocouplers MIL-PRF-38534

What is Optocoupler? (also known as: Photocoupler, Opto-isolator, Optical isolator)

Optocoupler Selection Criteria

Ontical

Emitter

Transparen

Dielectric

How a Basic Optocoupler Works

Detector

Basic Electrical Parameters:

- CTR (= lo/lf) range
- LED Vf, If

Voltage

Current

Converter

- Vcc power supply range
- Data rate (MBd) / tprop delay
- Operating temp. range
- CMRR kV/µs (noise immunity)
 Other Parameters:
- Package: SO, SSO, DIP, ACNV, ACNW, ACNT
- Reliability / Operating Lifetime

Broadcom Limited Proprietary and Confidential. © 2016 Broadcom Limited. All rights reserved.

Basic Safety Parameters:

Light Blocking

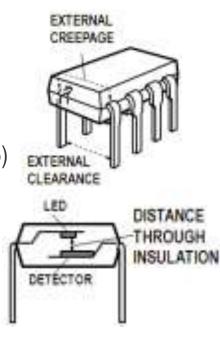
Epoxy Outer Mold

Input

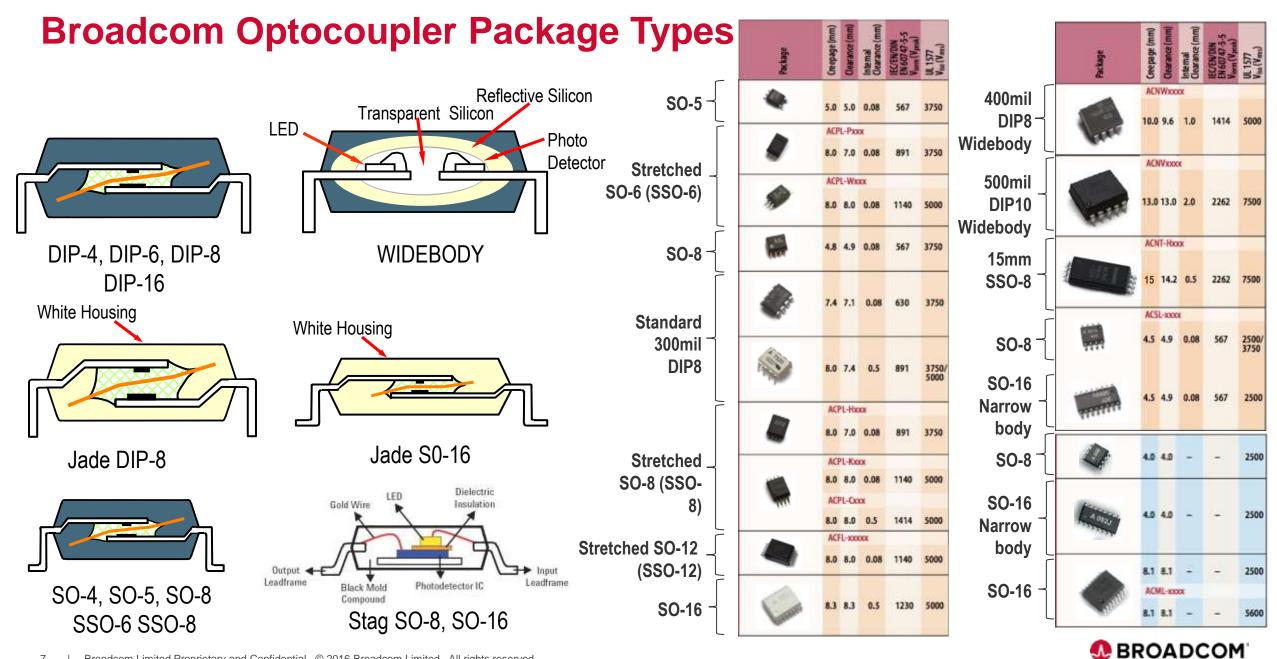
Leadframe

Viso : dielectric withstand voltage (UL1577)

LED


Viorm : max. working insulation voltage (IEC 60747-5-5)

Dielectric Insulation


Insulation Tape

Output Leadframe

- Clearance, creepage, DTI : insulation coordinates
- "Functional", "Basic", "Reinforced Insulation"
- Safety certificates (component level standards): UL1577, IEC 60747-5-5, CSA #5
- ESD: HBM, MM, CDM
- MSL=1 (most optocouplers)

7 Broadcom Limited Proprietary and Confidential. © 2016 Broadcom Limited. All rights reserved.

Optocoupler Market Segments

Introduce R²Couplers[™] – Broadcom Automotive-grade Optocouplers

Broadcom offers reliable isolation technology with a wide selection of products

Applications in xEV Systems

Charger & Converters Gate Drive

- High Speed MOSFET Driver
- Smart IGBT/MOSFET Driver Analog Sensing
- Voltage Sensing
- Current Sensing
- Analog Feedback
- **Digital Interface**
- Digital Communications
- Status Control / Wake-Up
- Fault Feedback

Oil Pump

Inverter

- IPM Drive Interface
- Integrated IGBT
- Gate Drive

CANBus Interface

- Digital Communications
- Status Control

Analog Sensing

- Temperature/ Voltage Sensing
- Current sensing

Traction Inverter System Gate Drive

High Speed MOSFET Driver

- Smart IGBT/MOSFET Driver
- Analog Sensing Voltage Sensing
- Current Sensing
- Temperature Sensing
- **Digital Interface**
- Digital Communications
- Status Control / Wake-Up Fault Feedback

Heating, Ventilation & Air Conditioning Aircon Inverter IPM Digital Interface

Battery

System

Management

Battery Pack

Voltage sensing

Cell Management

Status Control /

Fault Feedback

Solid State Relay

Voltage Sensing

Wake-Up

Measurement

Communications

Insulation Resistance

Monitoring

Digital

IGBT Gate Driver

Heater

- IPM Digital Interface
- Voltage Sensing
- Current Sensing

Digital Interface

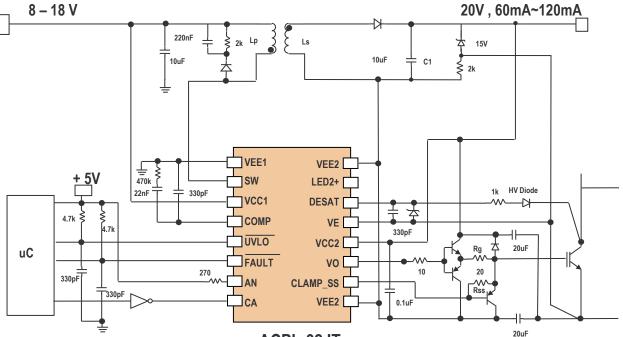
- Digital Communications
- Status Control / Wake-Up
- Fault Feedback

Different packages to meet different high voltage requirement

BROADCOM

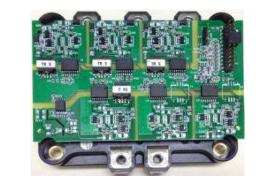
	Gate Driver	IsoAmp	Digital	Relay		
Part Numbers	ACPL- K33T/K34T	ACPL-782T	ACPL- M49T/K49T/ ACFL-5212T	ACPL- K30T		
	ACPL- 31JT/344JT	ACPL- C87AT/C87BT	ACPL-M43T/ K43T/K44T/ ACFL-5211T	ASSR- 601JV*		
	ACPL- 32JT/33JT	ACPL- C797T/C799T*/ 0873T*	ACPL-M71T/ K71T/K74T/ ACFL-6211T			
	ACFJ- 3540T*		ACPL-M72T/ K72T/K75T/ ACFL-6212T			
Traction Inverter	0	0	Ο			
Charger	0	0	0			
Converter	0	0	0			
BMS		0	0	0		
HVAC		0	0			
Oil Pump			0			
* Advance information						

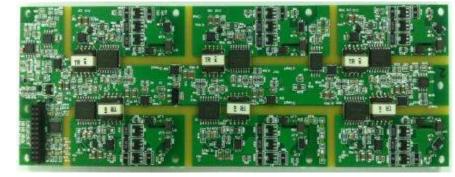
Gate Driver for Onboard Charger, DC-DC Converter and Inverter


Isolation / Power	Benefits	< 10kW	10kW – 100kW - 250kW		
 Flyback Converter Isolation Driver 	 Distributed power architecture Better performance and lower cost 		ACPL-32JT 2A Gate Drive Desat Sensing Miller Clamp 2W Flyback Controller		
 Isolation Driver 	•Fully compatible to existing power architecture	ACPL-31JT Smart MOSFET Driver ACPL-K34T 200kHz MOSFET Driver ACPL-K33T SiC MOSFET Driver ACPL-312T 2A IGBT Gate Drive	ACPL-344JT 2A Gate Drive, Desat Sensing Miller Clamp, UVLO Feedback ACPL-38JT 2A Gate Drive, Desat Sensing, Fault Feedback		
Application		DC/DC, Charger	Drive Systems		

ACPL-32JT Compact Design with Integrated Flyback Controller

Features


- Integrated flyback controller
- Rail to rail driving output
- Negative Gate Biasing and Miller Clamp for gate noise rejection
- Adjustable Desat Sensing threshold through additional Desat Diode
- Soft shutdown timing can be adjusted by Rss
- Direct low impedance LED input, high dV/dt noise immunity
- Over current blanking time can be controlled through blanking capacitor


Evaluation Board Available

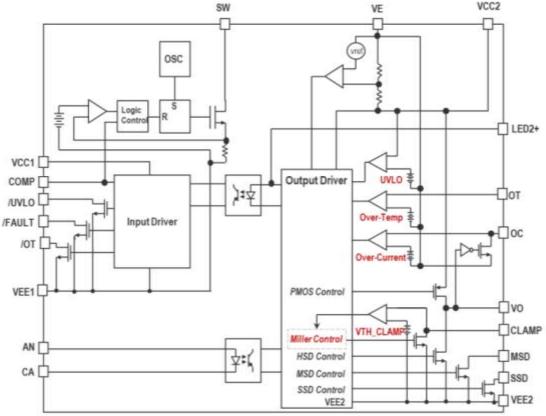
Single Channel

ACPL-32JT

ACFJ-3540T - Gate Driver with Flyback DC-DC Controller, Emitter Sensing, Miller Clamping and UVLO Feedback

Key Features

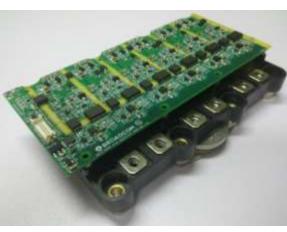
- Qualified to AEC-Q100 Grade 1 Test Guidelines
- Automotive temperature range : -40°C to +125°C
- Integrated flyback controller for isolated DC-DC converter
 - Regulated output voltage (V_{CC}-V_E): 15V +/- 5%
 - Configuration negative supply $(V_E V_{EE})$
- 1A / 2.5A minimum peak output drive / sink current
- Miller clamp sinking current : 2.5A
- Propagation delay: 150ns max.
- Integrated fail-safe IGBT protection
 - Emitter over-current sensing, "Soft" IGBT turn-off and fault feedback
 - Under Voltage Lock-Out protection (UVLO) with feedback
 - Over temperature detection, with auto shutdown and feedback
- High noise immunity
 - Direct LED input with low input impedance and low noise sensitivity
 - Common Mode Rejection(CMR): $50kV/\mu s$ at $V_{CM} = 1500 V$
- SO-24 package with 8mm creepage and clearance
- Regulatory approvals:
 - UL1577, CSA (5kV_{RMS} / 1 minute)
 - IEC 60747-5-5 (Continuous working voltage, V_{IOTM}, of 1230V_{PEAK})

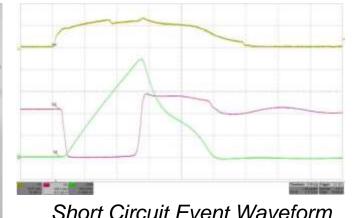

Applications

IGBT Gate Driver for Traction Inverter, Charger and HVAC

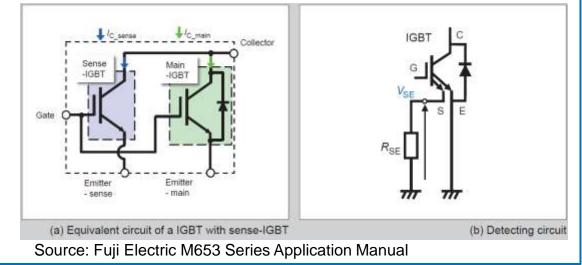
- <u>Status Update</u>
- Datasheet : Available

Engineering Samples: Available

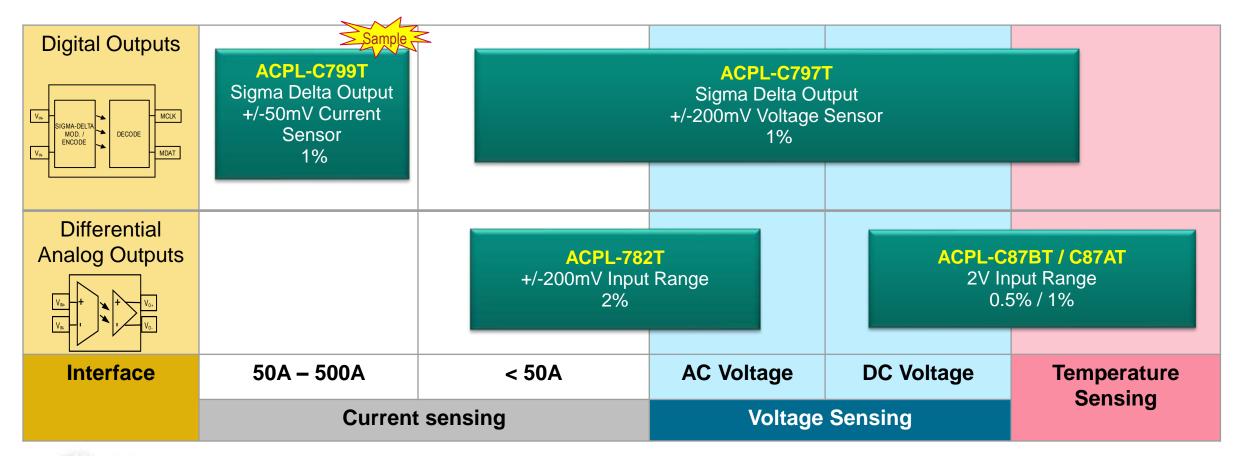


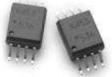


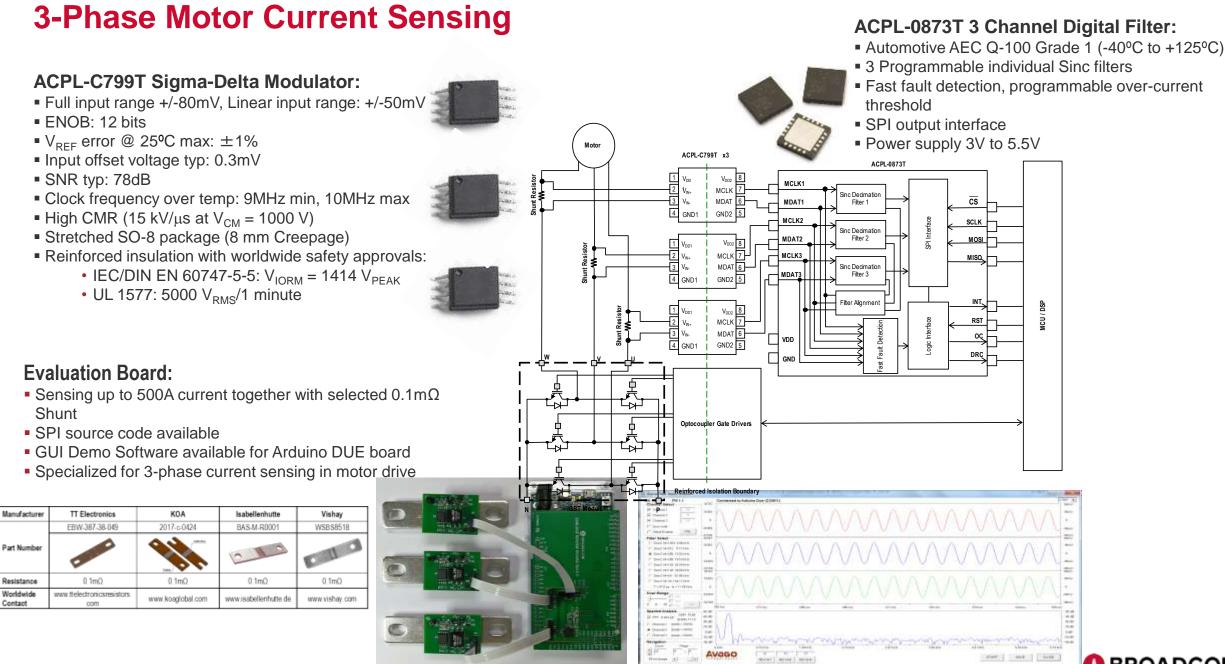
Driver Board using ACFJ-3540T and ACPL-C87AT for Fuji M653 IGBT Module


About the driver board:

- Direct mount to IGBT module
- Driver IC: ACFJ-3540T with integrated flyback DC/DC controller
 - Over current and short circuit protection (emitter sense) with soft shutdown capability and fault feedback
 - UVLO protection and feedback
 - Over temperature protection and feedback
- +15.5/0V Distributed 2W Power Supply
- 5A peak buffer output for gate driving
- Temperature feedback for each channel
- Buffer driven PWM gate driver input




- About the Fuji M653 Series Automobile IGBT Module
 - 800A/750V emitter current sensing IGBT module
 - 6 switch elements
- About emitter sensing IGBT:

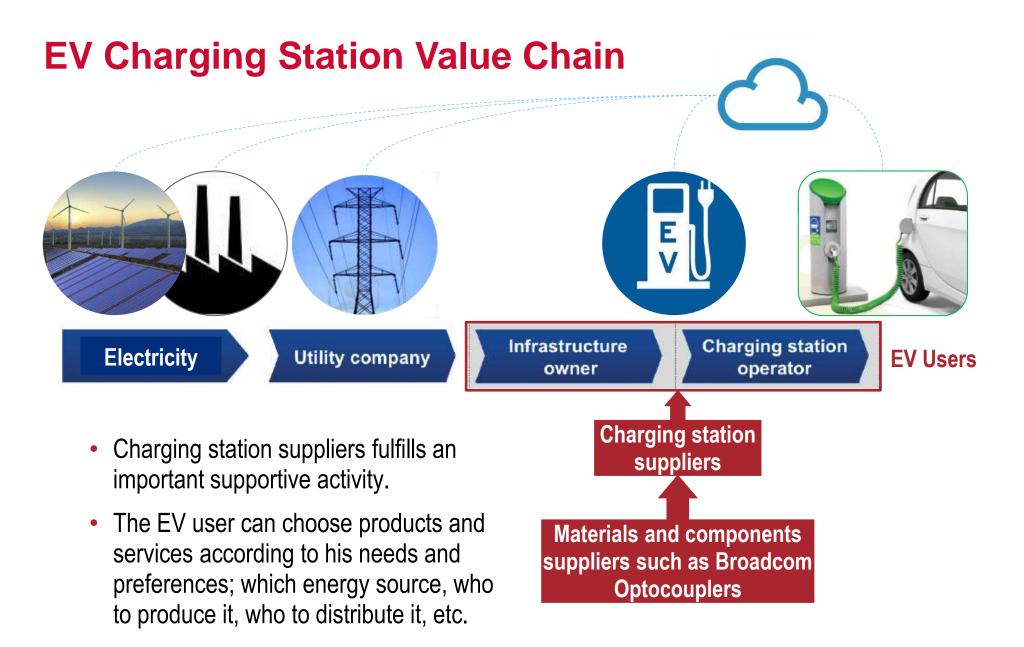


Isolation Amplifier Selection

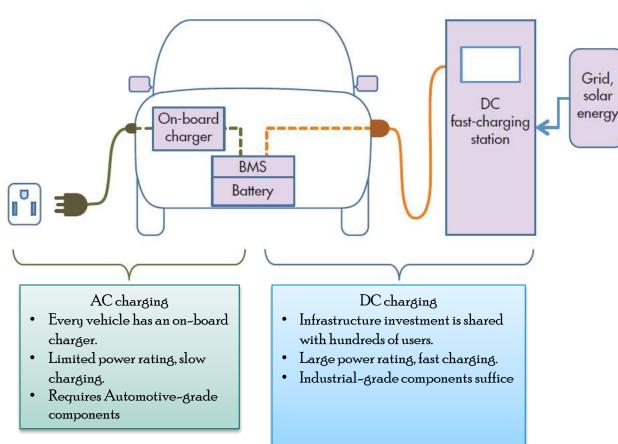
BROADCOM'

Digital Optocoupler Selection

Up to 1414Vdc (BUS/Truck)	Dual Channel Uni / Bi-Directional ACFL-5212T Wide Supply Range 4 pin, Linear Response SSO12 Bi-direction	ACPL-K441 Wide Supply Range Linear Response Zero Off state power SSO8 Dual ACFL-5211T Wide Supply Range Linear Response Zero Off state power SSO12 Bi-direction	ACPL-K75TACPL-K74TSupply Current < 1.5mA SSO8 DualSSO8 DualACFL-6212TSSO8 DualACFL-6212TACFL-6211TSupply Current < 1.5mA SSO12 Bi-directionSSO12 Bi-direction
	ACPL-K491 Wide Supply Range 20kBd 4 pin configuration Linear Response Zero off state power SSO8 Single	ACPL-K431 Wide Supply Range 1MBd Prop Delay < 1us Linear Response Zero Off state power SSO8 Single	ACPL-K72T 10MBd CMOS Output SSO8 Single ACPL-K71T 15MBd CMOS Output Prop Delay < 32ns SSO8 Single
Up to 560Vdc (Passenger Cars)	ACPL-M49T Wide Supply Range 20kBd 4 pin configuration Linear Response Zero off state power SO5 Single	ACPL-M43T Wide Supply Range 1MBd Prop Delay < 1us Linear Response Zero Off state power SO5 Single	ACPL-M72T 10MBd CMOS Output Supply Current < 1.5mA SO5 Single ACPL-M61T 10MBd Open Collector Output SO5 Single
Isolation Voltages	Up to 100kBd	100kBd – 1MBd	1MB – 15MBd



A Complete Safety Isolation Solution for Electric Vehicle Charging Station Designs



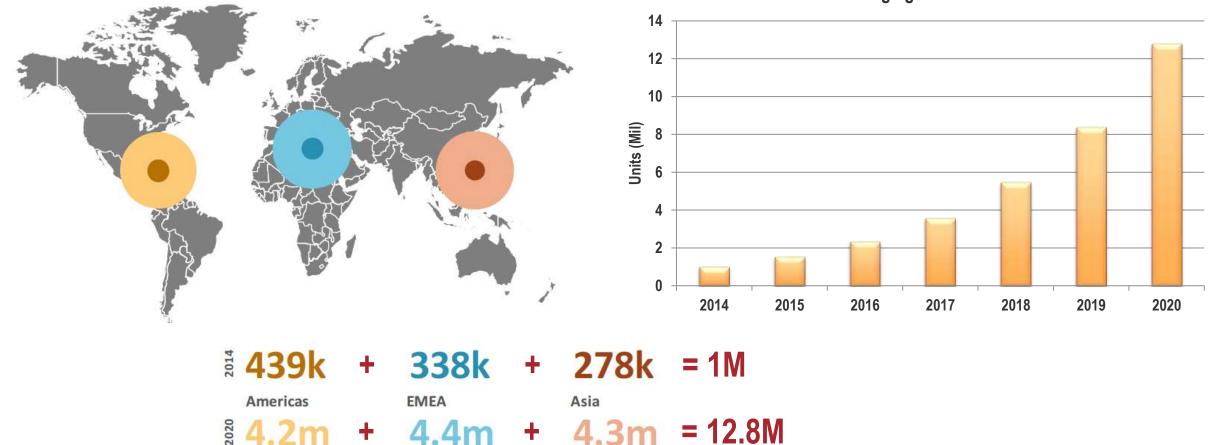
Broadcom Limited Proprietary and Confidential. © 2017 Broadcom Limited. All rights reserved.

On-board Charger and Charging Station

AC/DC Charging Electrical Ratings

		Nominal Supply Voltage	Maximum Continuou s Current	Output Power	Estimated Charge Time ¹
Y	AC Level 1	120 V AC Supply, 1- phase	12 A 16 A	1.4 kW 1.9 kW	17 Hrs (OBC, SOC ² – 20% to full)
	-		80 A	Up to 19.2 kW	SOC – 20% to full: 7 Hrs (3.3 kW OBC); 3.5 Hrs (7 kW OBC); 1.2 Hrs (20 kW OBC).
	DC Level 1	200-500 V DC (EVSE Output)	80 A	Up to 40 kW	1.2 Hrs (SOC – 20% to 100%, 20 kW off-board charger)
	DC Level 2	200-500 V DC (EVSE Output)	200 A	Up to 100 kW	20 min (SOC – 20% to 80%, 45 kW off-board charger)

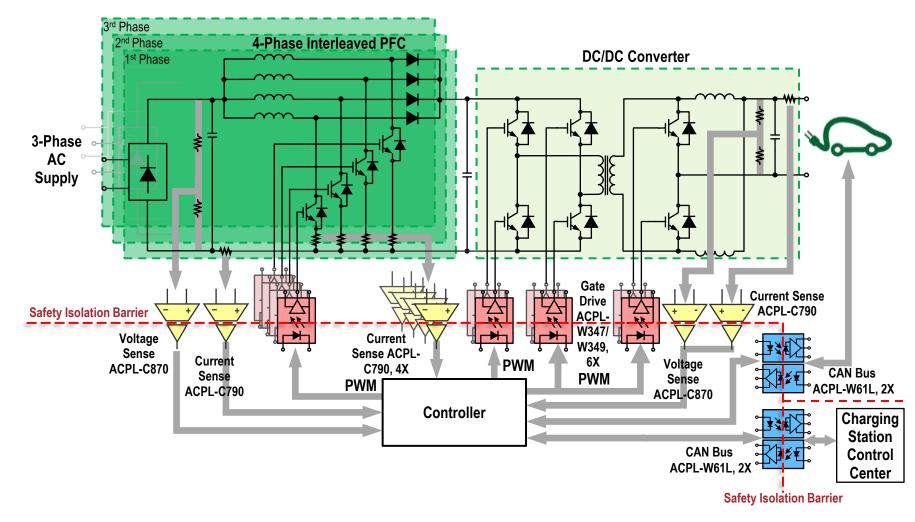
Notes:


- 1) For ease of discussion, only BEV (battery electric vehicle) examples are listed.
- 2) SOC (state of charge) is the equivalent of a fuel gauge for the battery pack in a BEV. 0% SOC means the battery pack is completely discharged; and 100% SOC means it's fully charged.
- 3) Rated Power is at nominal configuration operating voltage and coupler rated current
- 4) Ideal charge times assume 90% efficient chargers, 150W to 12V loads and no balancing of Traction Battery Pack.
- 5) BEV (25 kWh usable pack size) charging always starts at 20% SOC, faster than a 1C rate (total capacity charged in one hour) will also stop at 80% SOC instead of 100%.

Reference: ABB White Paper; SAE International.

20 | Broadcom Limited Proprietary and Confidential. © 2016 Broadcom Limited. All rights reserved.

Global EV Charging Station Market to Grow to 12.8 Million Units in 2020



Global EV Charging Station Cumulative

Source: IHS.

DC Fast Electric Vehicle Charging Station – Broadcom provides complete isolation solution to ensure safety

Recommended Optocouplers

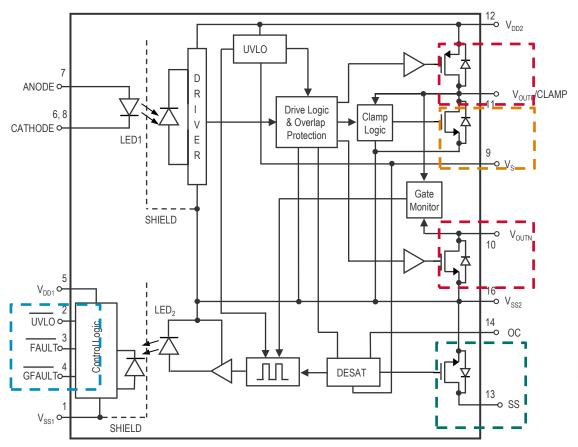
- Voltage sensor ACPL-C87B/C87A/C870
- Current sensor Analog output ACPL-C79B/C79A/C790; digital output ACPL-C797/796J/798J
- MOSFET gate drivers ACPL-W345/346; IGBT/SiC/GaN MOSFET gate drivers – ACPL-W347/349
- Smart IGBT gate drivers for large power charging stations – ACPL-339J/336J/337J
- CAN Bus isolation 5/10 MBd ACPL-W21L/W61L, 2X; 25 MBd ACSL-7210, 1X
- Insulation Resistance Detection ASSR-601J/601JV

Recommended Optocouplers for EV Charging Stations

The needs of Optocouplers in EV Charging system:

- Need gate drive optocoupler to drive IGBT/MOSFET
 - ✓ Power MOSFET gate drivers ACPL-W346/345, ACPL-W347/349
 - ✓ IGBT gate drivers ACPL-339J/336J/337J
 - ✓ SiC MOSFET / GaN device gate driver ACPL-352J [NEW]
- Need voltage, current and temperature sensor in inverters, DCDC converters
 - Voltage/Temperature Sensor ACPL-C87B/C87A/C870
 - Current Sensor ACPL-C79B/C79A/C790
- CAN bus communication requires high CMR Digital Optocouplers
 - ✓ CAN Bus isolation 5/10 MBd ACPL-W21L/W61L
 - High speed communication 25 MBd ACSL-7210
- Insulation resistance detection

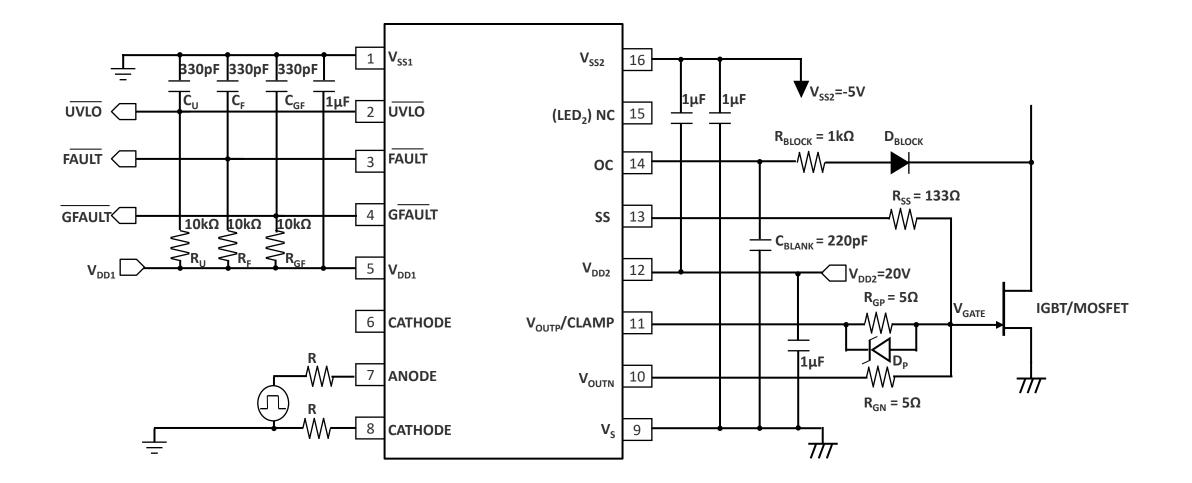
✓ Solid state relay ASSR-601J/601JV [NEW]

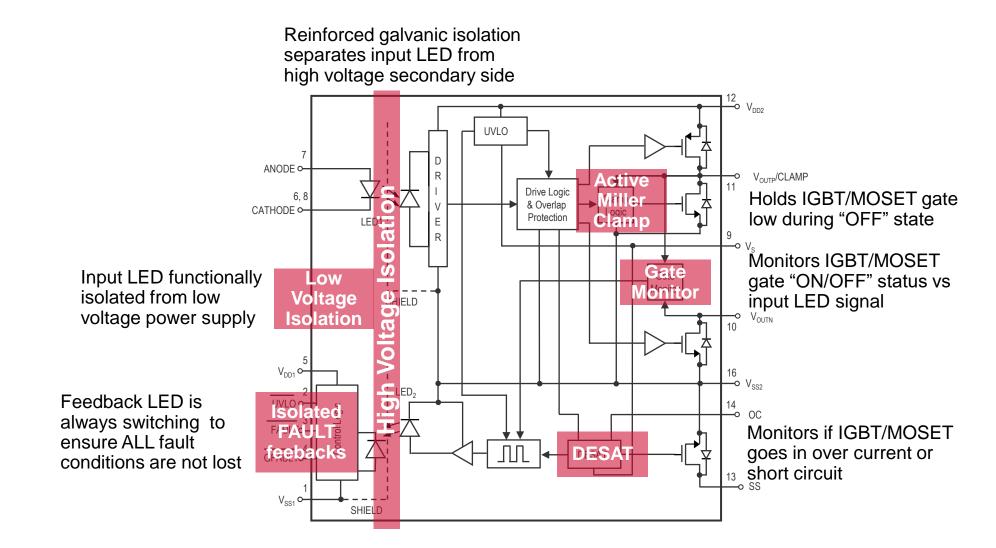


ACPL-352J – 5A Gate Drive Optocoupler with Over Current Protection and Isolated FAULT feedbacks

Key Features

- **5A(max)/4.5A(min)** Peak Output Current
- Rail-to-rail Dual Output
- Features for Functional Safety
 - IGBT/MOSFET Over Current Fault
 - UVLO Fault
 - IGBT/MOSFET Gate Status Fault
- Adjustable Soft Shut
- Integrated Miller Clamping
- SiC/GaN MOSFET ready
 - 150ns max. Propagation Delay
 - **75ns** max. Propagation Delay Difference
 - **10ns** typ. Rise and Fall Time
 - 150kHz Data Rate
- 1mA Blanking Capacitor Charging Current
- Isolation Voltage: 5kV_{RMS} 1 minute
- Working Voltage: 1414V_{PEAK} continuous
- Wide Operating Temperature: -40°C 105°C
- Worldwide Safety Approval:
 - UL 1577
 - CSA notice #5
 - IEC60747-5-5


Schematic Block Diagram

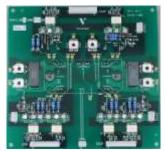


Application Circuit

Features for Functional Safety

SiC MOSFET / GaN Device Ready Gate Drivers

Reference Designs


 Fuji Electric, Gate Drive for SiC MOSFET
 1200V 100A SiC MOSFET 2CSI100AM-120-50

FO Fuji Electric

• Vincotech, *H6.5 3-Level* IGBT

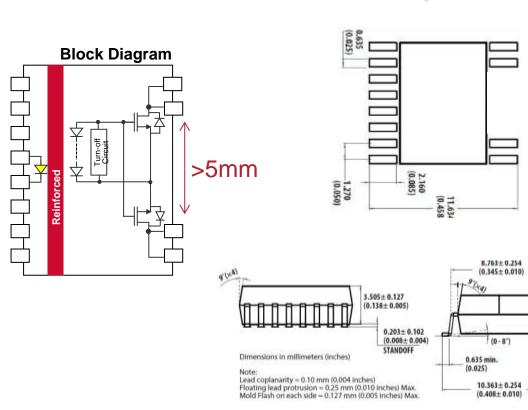
10-FY07HVA0x0S5-650V/50A-100A IGBT

Panasonic, Gate Drive for X-GaN
 PGA26E19BA – 600V/10A GaN Transistor

Smart Gate Drive Upgrades

Specification	HCPL- 316J	ACPL- 332J/333J	ACPL- 337J	ACPL-352J	Benefits
I _{OUT} Max	2.5 A	2.5 A	4.0 A	5.0 A	Eliminate Buffer
Rail2Rail	No (Single)	No (Single)	Yes (Single)	Yes (Dual)	Control On/Off time and eliminate gate diode
t _{PLH} /t _{PHL} Max.	500 ns	250 ns	250 ns	150 ns	SiC Ready
tR/tF Typ.	100ns	50ns	80ns	10ns	SiC Ready
Miller Clamp	No	1.7 A	2 A	2.5 A	Eliminate –ve supply
Soft Shut Slew Rate	Fixed	Fixed	Fixed	Adjustable	Suppress Transient Over Voltage Stress
DESAT Protection	Yes	Yes	Yes	Yes	Short Circuit Protection
UVLO Feedback	No	No	Yes	Yes	Eliminate additional feedback path
Gate Status Feedback	No	No	No	Yes	Functional Safety

HCPL-316J


Industrial Photo Mosfet – ASSR-601J Overview

Key Features

- Industrial Grade Operating Temperature -40°C to +110°C
- Breakdown Voltage, BV_{OFF}: 1500V typ. @ I_{OFF}=0.25mA
- Avalanche rated MOSFETs
- Off-State Leakage, I_{OFF} ≤ 1µA @ V_O=1000V, T_A=25°C
- On-resistance, $R_{DS(ON)} \leq 250\Omega @ I_{LOAD} = 50mA$
- Turn On Time: $T_{ON} \le 1$ ms
- Turn Off Time: $T_{OFF} \le 0.5$ ms
- Package: 300mil SO-16
- Creepage & Clearance ≥ 8mm (Input-Output)
- V_{ISO} = **5000V_{RMS}** (UL 1min Rating)
- Working voltage = 1414V_{PEAK} (Reinforced)
- MOS_{drain-to-drain} Creepage > 5mm
- CTI >600V Mold compound

Applications

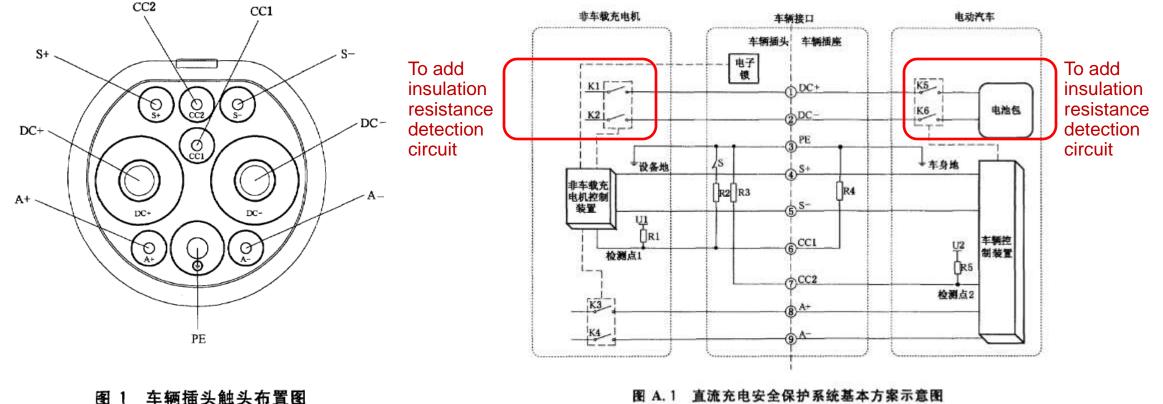
- Insulation resistance measurement for Motor-Earth leakage current
- Inrush Current Limiter for Inverter and Servo Drives

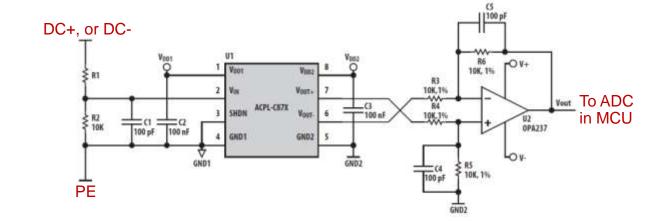
0.254 typ.

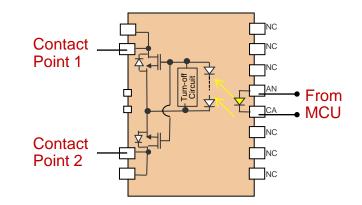
(0.010)

Insulation Resistance Detection for EV and DC Charging Station

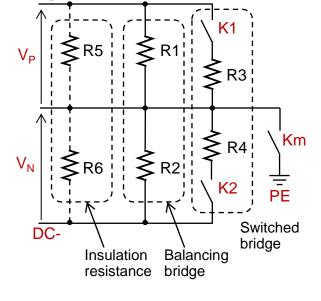
GB/T 20243.3-2015 requires insulation detection for both DC Charging Equipment and EV.




图 A.1 直流充电安全保护系统基本方案示意图


图 1

Using C87x Voltage Sensor, 601J/601JV SSR Switch


• Using C87x to measure DC voltage across DC+ and COM, and DC- and COM.

Using ASSR-601J/601JV SSR as the K1, K2, Km switches.

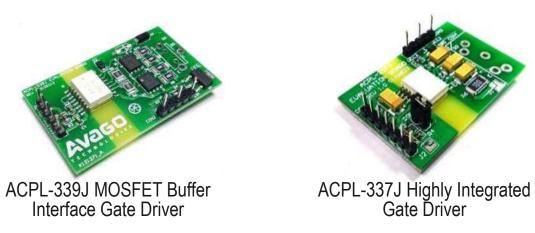
DC-

• EV charging station side and Automotive side use the same design.

Evaluation Boards

Basic Gate Drive Optocoupler

ACPL-P343/W343 IGBT Gate Driver



ACPL-P346/W3436 MOSFET Gate Driver

ACNT-H313 High Creepage/Clearance/Insulation Voltage Gate Driver

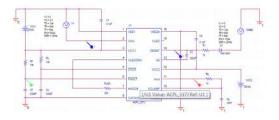
Smart Gate Drive Optocoupler

ACPL-302J Gate Driver with DC-DC controller

Reference Designs

- Fuji Electric AT-NPC 3 Level 4-in-1/12-in-1 IGBT Modules. ACPL-339J/332J Gate Driver with DESAT Protection
- Mitsubishi "Mega Power Dual" Series IGBT modules. CM1800DY 1800A/1700V. ACPL-339J Gate Driver with DESAT Protection
- Cree 2nd Gen SiC MOSFET C2M0080120D.
 ACPL-W346 High Speed Basic Gate Driver and ACPL-339J Gate Driver with DESAT Protection
- ST SiC MOSFET SCT30N120. ACPL-H342 Gate Driver and ACPL-C797/796J Sigma-Delta Modulator
- Altera Multi-Axis Motor Control Series.
 ACPL-798J Sigma-Delta Modulator with LVDS interface. ACPL-W61L 10MBd Digital I/O logic isolation

Tutorial Webinars


SIC MOSFET GATE DRIVE OPTOCOUPLERS

http://www.broadcom.com/support/resources /video-webinar-library#webinars

More Technical Evaluation Tools

• Spice Models

Download: http://www.avagotech.com/products/optocouplers/spicemodels/

• Power and Thermal Modeling

			User inputs p	er application requirements	
ACPL-337J			Datasheet s	pecifications	
		_	Calculated outputs		
Parameters	Symbol	Unit	Value	Comments	
ED Driving Current	II ED	mA	16		
LED Forward Voltage	VF	V	1.95	Datasheet Max	
Average LED Switching Duty Cycle	Duty	%	80%	Application Average	
LED Power Dissipation	Pe	w	0.02496	= ILED * VF * Duty	
Maximum Input IC Supply Current	ICC1	mA	6	Application	
Input IC Supply Voltage	VCC1	V	5.5	Datasheet recommended Max	
Input IC Power Dissipation	Pi	w	0.033	= ICC1 * VCC1	
Output IC Supply Voltage	VCC2	v	30	Datasheet	
Maximum Output IC Supply Current	ICC2max	mA	7.5	Datasheet Max	
MOSFET Gate Charge at Supply Voltage	Qa	uC	1	IGBT Datasheet per application or = VCC2 * Cg	
LED Switching Frequency	fowm	KHz	10	Application	
Absolute Maximum Output Current	lomax	A	4	Datasheet	
Minimum High Side Output Impedance	Rds.ohmin	Ohm	0.5	Datasheet	
Minimum Low Side Output Impedance	Rds.olmin	Ohm	0.2	Datasheet	
Minimum Gate Resistance charging	Rahmin	Ohm	7	= (VCC2 - VEE) / Iomax - Rd.soh(min)	
Minimum Gate Resistance charging	Ralmin	Ohm	7.3	= (VCC2 - VEE) / lomax - Rd,sol(min)	
Gate Charging/Discharging Resistance	Rg	Ohm	7.3	>= Rghmin Rglmin	
Maximum High Side Output Impedance	Rds,ohmax	Ohm	4.50	Datasheet Max	
Maximum Low Side Output Impedance	Rds,olmax	Ohm	3.60	Datasheet Max	
High Side Switching Power Dissipation	Phs	mW	57.20	= (VCC2*Qg*fpwm) * Rds,ohmax / (Rds,ohmax + F	
Low Side Switching Power Dissipation	Pls	mW	49.54	= (VCC2*Qg*fpwm) * Rds,olmax / (Rds,olmax + Rg	
Output IC Power Dissipation	Po	w	0.3317	=VCC2*ICC2max + Phs+Pls	
Thermal Coefficient Between					
LED and Input IC	Aei	°C/W	35.4		
LED and Output IC	Aeo	°C/W	33.1		
Input and Output IC	Aio	°C/W	25.6		
LED and Ambient	Aea	°C/W	176.1		
Input IC and Ambient	Aia	°C/W	92		
Output IC and Ambient	Aoa	°C/W	76.7		
Ambient temperature	Та	°C	95	Application measurement	
LED Junction Temperature	Te	°C	111.5	Te = AeaPe + AeiPi + Aeo Po + Ta	
Input IC Junction Temperature	Ti	°C	107.4 Ti = AeiPe + AiaPi + Aio Po + Ta		
Output IC Junction Temperature	То	°C	122.1	To = AeoPe + AioPi + Aoa Po + Ta	
Absolute Max. Junction Temperature for LED and IC	Ti	°C	125	Datasheet	

Contact Broadcom FAE for this

too	
100	١.

IGBT Gate Current Calculator

1. Bus Voltage, VB	V
2. Gate-Emitter Voltage, $V_{C(GE)}$	V
3. Turn-on Delay Time, $t_{d(on)}$	ns
4. Rise Time, t,	ns
5. Reverse Transfer Capacitance, $C_{res} = C_{GC}$	pF
6. Input Capacitance, C _{ies}	pF
Contact Dreadcore EAE for this	

Contact Broadcom FAE for this

tool

For more info, visit:

OPTOCOUPLERS

https://www.broadcom.com/products/optocouplers/

REFERENCE DESIGNS

https://www.broadcom.com/support/resources/reference-design

BROADCOM[®] connecting everything •

Broadcom Limited Proprietary and Confidential. © 2017 Broadcom Limited. All rights reserved.

00